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Abstract. Petri nets famously expose concurrency directly in their states-
pace. Building on the work on the compositional algebra of nets with
boundaries, we show how an algebraic decomposition allows one to ex-
pose both concurrency and spatial distribution in the statespace.
Concretely, we introduce a high-level domain specific language (DSL),
PNBml, for the construction of nets in terms of their components. We
use PNBml to express several well-known parametric examples common
in the literature.
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Introduction

Composition of nets is of fundamental importance in constructing models of
large systems [23]. A successful theory must combine simplicity, so as not to
overburden users with unnecessary technicalities, with a rigorous formal seman-
tics that can be harnessed for reasoning and automated verification, for example
via model checking or theorem proving. The interplay between simplicity and
rigorous, practical foundations allows the development of modelling languages,
tools and techniques that support the user in model design and evaluation, the
elimination of bugs, verification, refinement and finally code generation and de-
ployment. The field of compositional concurrent/distributed system specification
thus collects insights and techniques from the various communities: models of
concurrency, process algebra and programming languages, amongst others.

While Petri nets [22] were introduced in part to model study chemical and
physical phenomena, their applications until recently have been chiefly in com-
puting. Their popularity is now extending to other disciplines, both scientific and
industrial, where distributed, concurrent systems abound [12,16,29]. Their vivid
graphic formalism is intuitive, and clearly expresses the concurrency inherent
in the systems they model. This information is moreover crucial in verification
tasks: for instance partial order reduction that can alleviate the state-explosion
problem. The applicability of such methods relies on the fact that in nets, unlike
in mere transition systems, concurrency is explicit in their structure.

Process algebra [11,20] on the other hand, focusses on the study of syntax
for component-wise composition of systems. The emphasis is usually on compo-
sitionality, whereby the behaviour of a composition system is defined exactly in



terms of its components behaviour: there is no emergent behaviour when com-
posing sub-systems, simplifying intuitive and formal reasoning. The practical fo-
cus is often on using behavioural pre-orders and equivalences to simplify global
complexity. For the latter, the pre-orders and equivalences must be congruences
with respect to the composition operation(s): one can switch two behaviourally
equivalent components without affecting the behaviour of the system as a whole.

As opposed to process algebras, net models are often monolithic, with the
entire system being modelled in one net. As opposed to Petri nets, the semantics
of a process algebra specification is often given in terms of a transition system
(TS), that “hides” the concurrency: a TS represents interleavings of concurrent
events, thereby obscuring which events can occur concurrently.

In order to combine the advantages of both approaches, one needs to define
composition operations on nets that:

– are as simple and intuitive for users as nets themselves,

– are supported by a suite of high-level specification languages and tools for
modelling and verification,

– have a compositional formal semantics where typical behavioural pre-orders
and equivalences are congruences, thus enabling the use techniques from
process algebra,

– have an intuitive graphical presentation that qualitatively eases the task of
modelling and quantitatively leads to efficient verification algorithms, for
example through the use of partial order reduction.

There have been many proposals in the literature for net composition opera-
tors, some of which we discuss below. As observed by Reisig [23], many are quite
technical and/or specific for a particular class of nets, making them inconvenient
for use by practitioners. Some are equipped with a compositional semantics, yet
no formalism has become standard nor widely used. The challenges of modelling
large complex systems, given the increasing popularity of Petri nets in several
fields, make the quest for a successful theory of net composition timely.

The algebra of Petri nets with boundaries [26,6,7] (PNB) gives a composi-
tional algebra of Petri nets, allowing large nets to be constructed from smaller
“components” in the style of process algebra. It features two associative but non-
commutative composition operations, and it handles both 1-bounded elementary
nets [26] as well as potentially infinite-state P/T nets [6]. The focus of research
thus far has been on theory: for instance the algebra was shown to be composi-
tional and lead to congruent behavioural pre-orders and equivalences. Moreover
it was proved that all 1-bounded elementary nets can be composed from a small
set of primitive PNBs (two nets that express a marked and unmarked place and
eight primitive nets for “wiring” together transitions). In this paper, our aim is
to demonstrate that PNBs are not merely a theoretical curiosity.

The “raw” algebra of PNBs is not convenient for describing real world sys-
tems directly. Syntactic repetition is unavoidable, and expressions soon grow to
be unmanageably large; in a sense the algebra is too low-level, lacking abstrac-
tion techniques that give compact and expressive representations. In order to
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make progress in this direction, we use insights from the functional program-
ming languages community: function abstraction, name binding, type-checking
and iteration. The result is a Domain Specific Language, the Petri Nets with
Boundaries Meta Language (PNBml), that is a central contribution of this paper.
We show that programs written in PNBml allow us to construct PNB expres-
sions, and thus nets in a compositional fashion. Programming language features
such as type-checking can catch simple, yet important specification bugs.

The language is expressive enough to express all of the parametric examples
we have come across in the literature. In order to support our claims, we include
programs for a representative selection, including several of Corbett’s [10]. These
have proved to be popular as benchmark for model checkers and one immediate
convenience is that our PNBml programs can generate arbitrary instances as
input to a model checker. The type system and intuitive geometric nature of
PNBs mean that using PNBml is more convenient and less likely to lead to
specification errors than an ad-hoc solution for generating such nets.

Our chief claim is that PNBs retain the distinct benefits of process algebra
and Petri nets - compositional reasoning and descriptive graphical representa-
tion, whilst allowing for interaction between (sub-)components of a larger net.
In this paper, we take several steps to show that the algebra of PNB has what it
takes to become a mainstream low-level foundation for the modular specification
of complex concurrent and distributed systems. Concretely:

– we show that the algebra of PNBs can be used to write natural specification
of realistic systems,

– we introduce of a high-level DSL called PNBml. Programs in PNBml evaluate
to PNB expressions, yet PNBml provides a more expressive and convenient
setting to specify realistic, parametric systems.

– we provide parametric PNBml programs that generate several well-known
examples from the literature, including some of Corbett’s examples [10].

In our discussion above we have focussed on qualitative issues, and these
indeed are an important consideration in this paper. The theoretically minded
researcher or tool builder may ask what one gains by writing a PNB expression
rather than a global net, apart from the convenience of a program that generates
examples of arbitrary size. We believe that, just as one gains techniques such
as partial order methods through the explicit treatment of concurrency in the
statespace of nets, one can gain additional insight and techniques through ex-
pressing a system as an explicit network of synchronised Petri nets. As we show in
our examples, the algebra allows the specification of systems constructed from
spatially separated components, we have made initial investigations into how
this information can be exploited by model checkers [28,27]: briefly, identifying
identical components allows memoisation to be used when calculating and com-
posing component reachability information. Further, component unreachability
implies composite unreachability allowing the reachability check to “fail fast”.

Related work. While Petri nets are sometimes accused of being an inherently non-
compositional theory, already Mazurkiewicz [18] defined a compositional algebra
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of nets, based on fusion of named transitions. While in PNBs it is also transitions
that are fused, the composition operations are very different in nature. Roughly,
Mazurkiewicz’s composition is a commutative parallel composition in the spirit
of CSP and CCS. Similar operations were used for the development of the Petri
Box calculus, a process algebra of nets [5]. The composition operations of PNBs,
instead, are closely related to the geometry of nets.

Reisig’s [23] simple composition of nets (SCN) introduces an elegantly simple
way of composing nets and is conceptually quite close to our work. His nets,
similarly to PNBs, have left and right interfaces that are made up of ports and
ought not to be confused with notions of input and output, rather reflecting the
structural geometry of nets. Differently, in SCN the interfaces typically expose
places, whereas PNB interfaces expose only transitions. Another difference is
that in PNB, composition N1 ; N2 is only defined when the right interface
of N1 is equal to the left interface of N2. Nevertheless, Reisig’s composition is
intuitively quite similar to our composition operation ‘;’. While [23] demonstrates
that the operation is very natural for composing real systems, the compositional
semantic aspects of the theory have not been developed.

Component-wise construction of nets was emphasised by Kindler [15] who
worked with a partial order semantics. The interfaces are a set of input and out-
put places, that are connected with a transition when composed. The semantics
was shown to be compositional with respect to this operation. Because the com-
position introduces additional transitions, it is not always clear how to divide a
net into components with input and output places. This issue is also problematic
in formalisms such as open Petri nets [4].

Structure of the paper. The remainder of this paper is organised as follows: in §1
we describe the component algebra of nets with boundaries, used to construct
composite Petri nets. In §2 we motivate the use of a DSL for more convenient
specification of net compositions, informally introducing our DSL, PNBml. In §3
we encode several of Corbett’s parametric examples using our DSL. We formally
introduce the syntax and semantics of PNBml in §4, and prove that type-correct
expressions are guaranteed to correctly evaluate. Finally, we discuss future work
and conclude in §5. We have tried to keep our presentation as intuitive and non-
technical as possible, illustrating the theory with a large number of examples.
Nevertheless, we have included the formal definitions in the appendices.

1 Nets With Boundaries

In this section we give an intuitive introduction to the algebra of Petri nets
with boundaries [26,6,7] (PNB). The formal details can be found in [7], and
we include the most important technical details in the appendix. There are
two versions of the algebra, one for k-bounded elementary nets (in which the
number of tokens at each place is restricted to a positive integer k, typically 1)
and one for ordinary, potentially infinite-state P/T nets. While explanations and
examples in this section can be understood in either version, the bounded version

4



is typically used in applications, since it suffices to characterise the behaviour
of safe nets, and its semantics is finite-state. The language of PNBs is inspired
by the recent revolution in the use of graphical syntax in various fields: for
instance graphical languages for quantum information [2], boolean circuits [17],
signal-flow graphs [24] etc.

We start by explaining the graphical notation used in this paper. The math-
ematical structure represented by a classical, unmarked Petri net is a directed
hypergraph: a directed graph in which edges have arbitrarily many sources and
targets. The classical graphical notation in net theory has a transition drawn
as a rectangle with directed incoming and outgoing arrows, thus identifying the
sources and targets. We use a different graphical notation: instead of orienting
transitions, each place is drawn as “directed,” having an in and out port. Transi-
tions are represented by undirected links—that is, sets of connected ports—that
similarly identify the sources and targets. Indeed, the sources are those places to
which it is connected via an out port, and the targets are those places to which
it is connected via an in port. The out port of a place is represented by a small
triangle pointing out of it, the in port by a triangle pointing out. The alterna-
tive graphical notation is compact and particularly convenient when reasoning
about transitions in composite NWBs. In order to distinguish individual links
and increase legibility, transitions are drawn with a small perpendicular mark.
For example, consider the graph with set of nodes {A,B,C,D} and a single edge
from {A,D} to {B,C}. In the left part of Fig. 1 we illustrate the classical Petri
net graphical notation of this structure, and the notation used in this paper is
given on the right.

A

C

B

D

A

C

B

D

Fig. 1: Two ways of drawing hypergraphs

A PNB is a Petri net with extra structure: two finite ordinals of boundary
ports, to which net transitions can connect. The two sets of ports are drawn, from
top to bottom, on the left and right hand sides of an enclosing box. An example
is given in Fig. 2: here the left set of boundary ports is empty and the right
contains two ports. We use the notation P : (0, 2) to mean that P is a PNB with
left boundary of size 0 and right boundary of size 2. As in the classical graphical
representation, the presence of a token at a place is represented by the small
black disc. Now consider the two transitions of P , the first, t, which connects
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the first right boundary port with the out-port of place p, and the second, u,
which connects the second right boundary port with the in-port of place q.

p

q

t

u

Fig. 2: An example PNB, P : (0, 2)

Intuitively, transitions t and u are not yet completely specified because they
connect to a boundary port. Thus when composed into a larger net, t may
result in several different transitions, all of which will include p in their pre-sets.
There are two operations for composing PNBs: synchronisation along a common
boundary and a non-commutative parallel composition.

The most interesting operation on PNBs is synchronisation along a common
boundary; we illustrate this operation in Fig. 3. In each of the examples, the size
of the right boundary of the first net agrees with the size of the left boundary
of the second net—this is a general requirement for composition to be defined:
nets that do not agree on the size of their common boundary cannot be syn-
chronised. Given nets X : (k, l) and Y : (l,m), their composition is denoted
X ; Y : (k,m). In general, transitions of the composed net—called the minimal
synchronisations—will be subsets of transitions of the individual component
nets. We describe this operation informally with examples because the graphical
presentation is quite intuitive. See the appendix for a formal treatment.

Consider the top left quadrant of Fig. 3. The composed net P ; Q has a tran-
sition {t, a} that results from synchronising transitions t and a. The transition
{t, a} is now fully specified and will not be further altered because it is not con-
nected to any boundary port in the composed net. The situation for transition
{u, b} is similar. In the top right quadrant, there are two separate transitions, c
and d, that can synchronise with t. Both the choices are taken into account in the
composed net and result in two different transitions {t, c} and {t, d}, which intu-
itively mean that the transition t in the left net can synchronise in two different
ways with transitions in the right net. The transition e does not connect to any
places, only to the second boundary port. Thus the corresponding synchronised
transition {u, e} has precisely the same pre and post set as transition u. In the
bottom left quadrant, the transitions t and u are fused into a single transition
after composition. In the final example, u has no complementary transition to
synchronise with and thus no composite transition results.
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t

u

P : (0, 2)

a

b

Q : (2, 0)

(t, a)

(u, b)

P ; Q : (0, 0)

t

u

P : (0, 2)

c

d

e

R : (2, 0)

(t, c)

(t, d)

(u, e)

P ; R : (0, 0)

t

u

P : (0, 2)

g

S : (2, 0)

(t, u, g)

P ; S : (0, 0)

t

u

P : (0, 2)

f

T : (2, 0)

(t, f)

P ; T : (0, 0)

Fig. 3: Examples of compositions of PNBs

The second operation for composing PNBs is called tensor. Graphically, it
can be described as “stacking” one net over the other, and intuitively, it acts
as a non-communicating parallel composition. Differently from synchronisation
along common boundary, any two nets can be tensored: given nets X : (k, l) and
Y : (m,n), we have X ⊗ Y : (k+m, l+n). A simple example is given in Fig. 4.

t

(a) P : (0, 1)

u

(b) B : (0, 1)

t

u

(c) A ⊗ B : (0, 2)

Fig. 4: Example of tensor

Both ‘;’ and ‘⊗’ are associative, but neither is commutative.

PNBs have a labelled transition semantics (see the Appendix for details) that
is compositional in two ways. First, for any composable nets N and M , we have
that JN ; MK ∼= JNK ; JMK. On the left of the equation ‘;’ denotes composition
of PNBs, illustrated in Fig. 3, while on the right ‘;’ denotes composition of their
LTSs, as explained in the previous paragraph. The relation ∼= is isomorphism
of transition systems. Similarly, we have that JN ⊗MK ∼= JNK ⊗ JMK. This
means that the behaviour of a composed net depends only on the behaviours
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of its components, an important principle in formal semantics of programming
languages: there is no unexpected emergent behaviour in a composite net.

Secondly, the semantics is compositional w.r.t. several standard notions of
behavioural equivalence ∼, (bisimilarity, weak bisimilarity, language equivalence,
etc.): if JNK ∼ JN ′K then also JN ; MK ∼ JN ′ ; MK, JM ; NK ∼ JM ; N ′K,
JN ⊗MK ∼ JN ′ ⊗MK and JM ⊗NK ∼ JM ⊗N ′K, whenever the compositions
are defined. In particular, this means that behaviourally equivalent nets can be
substituted for each other in any context. This powerful principle of process al-
gebra is useful when reasoning about the behaviour of complex systems.

1.1 Specifying systems algebraically

Fig. 5: Token ring network

The examples we have considered thus far have not been of practical interest,
having been chosen for their simplicity in order to illustrate the basic operations
of PNBs. We now show how a more interesting system can be expressed with
the algebra. We will consider other realistic examples in §3.

Consider a model of simple token ring network, taken from [1], and illustrated
in Fig. 5. Note that the (1-safe) net contains three identical components that
differ only in their “internal state” (the local marking). Initially, only the leftmost
component can proceed: after it finishes its internal computation it relinquishes
its token, meaning that the next component can proceed. The modular structure
of the system is made explicit with the algebra of PNBs, illustrated in Fig. 6,
where we show how the system can be expressed formally as a collection of
component PNBs, wired together appropriately with simple connector PNBs.
Indeed, when the expression (†) is evaluated by composing nets with boundaries,
the resulting Petri net is isomorphic to the net in Fig. 5.

The example is an evocative illustration of the fact that the operations for
composing PNBs are very closely linked to the underlying geometry of nets –
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D ; ((S ; T ; T )⊗ I) ; E (†)

Fig. 6: A token ring network as a PNB expression

the logical structure of the system can be seen by examining the structure of the
algebraic expression.

1.2 Explicit spatial distribution

Using transition systems as a model of concurrency has a long history (see e.g. [3]).
Indeed, the semantics of a Petri net is usually a transition system. Two reasons
are often cited by researchers and practitioners in support of working with Petri
nets, rather than, for example, products of automata. One is qualitative: the
graphical syntax results in vivid, intuitive and informative models of real con-
current and distributed systems. A more empirical, quantitative reason is that
transition systems have a monolithic statespace that does not contain inherent
information about concurrency. Instead, a state of a Petri net, i.e. a marking,
has structure from which one can extract useful information. This leads to prac-
tical techniques for mitigating state explosion when model checking, e.g. partial
order reduction [19] and symmetry-reduction [25], that would not be possible if
working with mere transitions systems.

Transition system
State graph←−−−−−−− Petri net

Composition←−−−−−−−− PNB expression (‡)

Just as Petri nets can be evaluated into a transition system, forgetting the con-
currency, a PNB expression can be composed into a Petri net, forgetting the
spatial distribution. As we have shown, the close connection between the alge-
bra and net geometry is a qualitative reason for working with PNB expressions.
The information can also be exploited quantitatively [28,27] in order to improve
the performance of model checking in suitable examples – the statespace of a
PNB expression contains information both about concurrency (because the com-
ponents are Petri nets) as well as spatial distribution.
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2 A Language for Net Composition

In the previous section we demonstrated the algebraic description of Petri Net
systems in terms of their component nets with boundaries. We now motivate us-
ing a Domain Specific Language (DSL), PNBml, that evaluates to the algebra of
PNB, but adds expressive high-level functional programming language features.

Consider again the algebraic description of a token ring network, as illustrated
in Fig. 6. How might we generate the algebraic expression representing a similar
network of, say, 10 worker components? A simple approach is to explicitly write
the term

D ; ((S ; T ; T . . . ; T ) ⊗ id) ; E

where T appears precisely 10 times. However, this is clearly not scalable: for large
numbers of components, or more complex components (that may themselves be
formed of component compositions) it becomes a nuisance to construct such low-
level expressions, and furthermore, ensure that they are correctly composed.

Consider the following expression that we might (accidentally) write when
composing task nets t : (1, 1).

t ; (t ⊗ t)

The result is undefined, since the two nets being sequentially composed have
different size boundaries — composition on such nets is not definable in a unique
way1. Indeed, it is easy to observe that t ⊗ t : (2, 2). Yet, for the sequential
composition to be well-defined, we must have that t ⊗ t has boundaries (1, i) for
any i, a contradiction, indicating an invalid expression. To ensure we disallow
such invalid expressions, we must use an appropriate notion of type, which can
be ascribed to expressions, to ensure that incompatible nets are never composed
during evaluation.

When describing complex components, we would like any repeated sub-
components to be described only once, rather than each time they are used.For
example, we might consider an extended token ring network model where each
task, T , is comprised of two sub-components: T1 and T2. Using name binding,
we might describe a sequence of such tasks by writing:

bind t ← (t1 ; t2 ) in t ; t ; . . . ; t

Another improvement we can make is to abstract over procedures; in the pre-
vious example, we perform the procedure “sequentially compose with t” several
times. Using a lambda notation common to functional programming languages,
we might write this procedure as:

λx . x ; t

1 In general there will be many ways to align the boundaries, giving different nets.
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that is, take a suitable net, represent it by the variable x and compose it with
t. Using such an abstraction, we can represent the expression as:

bind t ← (t1 ; t2 ) in

bind addt ← λx . x ; t in

addt (addt (. . . (addt t)))

Finally, we introduce a way of compactly writing an expression to represent
“apply a procedure n times to an initial argument”, that is, allowing us to
represent sequences of tasks as per Fig. 6, but with parameterised length.

The notion of repeating an same operation n times is described by “folding”
over the number n and repeatedly performing the operation, until n becomes 0.

bind t ← (t1 ; t2 ) in

bind addt ← λx . x ; t in

fold n addt t

where fold n f x is an expression that applies f to x, n times: f(f(. . . (fx))).
Other examples, such as all of those in §3, are naturally parametric and can thus
be compactly represented for any particular parameter choice. As an example,
we may represent the token ring network of Fig. 6, with the expression:

bind procs ← fold 2 (λx . x ; T ) S in

D ; (procs ⊗ I) ; E

Since PNBml programs evaluate to PNB expressions, we can extend (‡):

PNB expression
Evaluation←−−−−−−− PNBml program

We defer formally introducing PNBml to §4. Instead, in the next section, we
show how it is used to encode several well-known examples.

3 Examples

In the following examples we frequently use the “wiring” component nets of
Fig. 7, which do not contain places, but are useful when connecting components.

3.1 DAC: Divide and Conquer

The DAC nets [10] model the recursion inherent in divide and conquer ap-
proaches to problem solving. The components used in DAC are illustrated in
Fig. 8 and their PNBml specifications are given in the Appendix. Each worker
net can chose to invoke a computation in a child process, or perform all compu-
tation itself. If a worker invokes a child process, it must then wait for it and all of
its descendants to finish. Each layer in the recursion is modelled by the addition
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(a) eta : Net〈0, 2〉 (b) id : Net〈1, 1〉 (c) epsilon : Net〈2, 0〉

Fig. 7: Commonly-used Wiring Component Nets

(a) cont : Net〈0, 2〉

forkChild

joinChild

forkMe

joinMe

(b) worker : Net〈2, 2〉

(c) term : Net〈2, 0〉

Fig. 8: DAC Component Nets

of a worker net. Varying the number of worker nets allows one to treat recursion
up to any depth. The worker chain is terminated by a net without synchronising
transitions, forcing the last worker to do any remaining work itself.

The parametric PNBml expression for DAC with i workers, is given below:

DAC(i)
def
= cont ;

(
fold i (λx : Net〈2, 0〉 . worker ; x) term

)
which is a controller net, composed with a chain of workers.

3.2 Hartstone

The Hartstone net models a program that starts i tasks in some order, lets
them compute, before instructing them to stop them in the same order. In the
original description of the problem, a central controller is directly connected to
the i tasks. Using nets with boundaries, we can simplify this description: we
construct i controllers, each responsible for a single task, with each controller
passing signals to the next controller.
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(a) master : Net〈1, 1〉

reqIn

startTask

stopTask

reqOut

(b) controller : Net〈1, 3〉
(c) task : Net〈2, 0〉

Fig. 9: Hartstone Component Nets

The PNBml expression to represent a Hartstone net, with i tasks is as follows:

HART (i)
def
= bind contTask ← controller ; task ⊗ id in

bind contTasks ← fold i (λx : Net〈1, 1〉 . contTask ; x) id in

eta ; (master ; contTasks) ⊗ id ; epsilon

This expression constructs a sequence of controller/tasks, which are wired to a
master controller (modelling the protocol of repeatedly starting all processes and
then stopping them). Signals are looped back around (via eta/epsilon), such
that master receives the signal when all controllers have already received it.

3.3 Dining Philosophers

The dining philosophers is the classic example of a concurrent system mod-
elled by Petri nets. Here, we present an alternative, component-wise view, where
philosophers and forks are composed in an interleaving fashion.

The PNBml expression to represent a table of dining philosophers, with i
philosophers and forks requires a simple id2 net, which is just id ⊗ id:

DPH(i)
def
= bind phfk ← ph ; fk in

bind phfks ← fold i (λx : Net〈2, 2〉 . phfk ; x) id2 in

lend ; (id2 ⊗ phfks) ; rend

The expression sequentially composes a philosopher with a fork, before forming
a sequence of i such compositions. Then, to form the “table”, the last fork is
wired together with the first philosopher.

3.4 Milner’s Cyclic Scheduler

Milner’s cyclic scheduler models a set of processes arranged in a cycle; each
process starts in turn and notifies the next process in the cycle to start. Upon
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takeL

putL

takeR

putR

(a) ph : Net〈2, 2〉

(b) lend : Net〈0, 4〉 (c) fk : Net〈2, 2〉 (d) rend : Net〈4, 0〉

Fig. 10: Dining Philosophers Component Nets

finishing, the processes may start again, but only if they have been signalled
to do so by the previous process; similarly, if a process is signalled whilst still
running, it must wait to finish before starting and passing the signal along.

The PNBml expression representing the cyclic scheduler makes use of the
same task component net as Hartstone. Each scheduler/task component feeds
its signalNext into the next component using an eta loop, whilst the cycle is
initially started by the starter net.

CY CLIC(i)
def
= bind schedTask ← scheduler ; task in

bind taskLoop ← (id ⊗ eta) ; (schedTask ⊗ id) in

bind tasks ← fold i (λx : Net〈1, 1〉 . taskLoop ; x) id in

starter ; (tasks ⊗ id) ; epsilon

3.5 n-bit Counter

An n-bit counter net models a “counter” from 0 − n that may be increment-
ed/decremented. Counters make use of transitions connected to place “query”
ports. Such transitions are represented graphically as an edge that connects to
the side of a place — the semantics are that the corresponding transition can
only fire if a token is present, and that no transitions connecting to the place’s
in/out ports are also being fired. Our query ports are equivalent to the read
arcs [9] found in contextual nets.
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(a) starter : Net〈0, 2〉

signalMe

signalNext

startTask

taskFinished

(b) scheduler : Net〈2, 2〉

Fig. 11: Cyclic Scheduler Component Nets

linc

ldec

lnotfull

lfull

rinc

rdec

rnotfull

rfull

(a) onebit : Net〈4, 4〉

(b) zerobit : Net〈4, 0〉

Fig. 12: n-bit Counter Component Nets

An n-bit counter net is formed by sequentially composing n 1-bit counter
nets, terminating with a net that always reports as being full. The intuitive
description of a 1-bit component is that it is either “empty” or “full”. A full
component may be directly decremented, or may pass its token to the next
component, in either case it becomes empty. Passing tokens along a chain of
components allows the chain to become full — a n-bit counter is not full if any
component has a token in the empty place; it is full if all places have tokens in
the full place. The PNBml expression is:

COUNT (i)
def
= fold i (λx : Net〈4, 4〉 . onebit ; x) zerobit

Clients of the counter interact with the 4 boundary ports on its left bound-
ary: they may increment, decrement and test for notfull/full (for example if the
counter is at capacity, transitions connected to lfull may fire and otherwise not).
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4 PNBml: a DSL for constructing Nets

In this section we give a formal description of the language PNBml for specifying
net compositions. In particular, we show how PNBml expressions are evaluated to
nets, and how the type system ensures that only valid expressions are processed.

PNBml is a monomorphic call-by-value functional language, following the
tradition in classic functional programming languages such as ML of extending
the syntax of the lambda calculus with convenient programming constructs. In
particular, we add net literals and composition, syntax for variable binding and
iterated function application.

The abstract syntax of PNBml is given in Fig. 13: x is drawn from a countable
set of variables, n is a net literal (defined using a low-level syntax described in the
appendix) and i ∈ N. Function application is indicated by simple juxtaposition:
(e1 e2). Following mathematical convention ;/⊗ associate to the left, and ⊗ binds
tighter than ;. We require type annotations on function abstractions to enable
type checking, which is discussed in §4.2.

e = x (variable)

| n (net literal)

| bind x← e1 in e2 (variable binding)

| λx : τ . e (function abstraction)

| e1 e2 (function application)

| e1 ; e2 (sequential net composition)

| e1 ⊗ e2 (tensor net composition)

| fold i e1 e2 (iterated function application)

Fig. 13: Syntax of PNBml

4.1 Operational Semantics

We define the big-step operational semantics of PNBml in Fig. 14, using an
explicit variable binding environment E. The language is call-by-value, and the
evaluation rules reduce PNBml expressions to values: either (composite) nets or
function closures (an environment and lambda abstraction).

The evaluation rules are almost standard, with E ` e ⇓ v meaning that in
environment E, expression e reduces to value v. Variables are simply looked up
in the environment, nets evaluate to themselves and lambdas evaluate to a clo-
sure over the current environment. Bindings evaluate their body in an extended
environment, similarly to applications. Sequential and tensor composition eval-
uate both expressions to nets, before applying the appropriate net operation.
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(EVar)
E ` x ⇓ E(x)

(ELam)
E ` λx : τ . e ⇓ 〈E,λx : τ . e〉

(ENet)
E ` n ⇓ n

(EBind)
E ` e1 ⇓ v1 E, x 7→ v1 ` e2 ⇓ v2

E ` bind x← e1 in e2 ⇓ v2

(EApp)
E ` e1 ⇓

〈
E′,λx : τ . e3

〉
E ` e2 ⇓ v2 E′, x 7→ v2 ` e3 ⇓ v3

E ` e1 e2 ⇓ v3

(ESeq)
E ` e1 ⇓ n1 E ` e2 ⇓ n2 n3 = n1 ; n2

E ` e1 ; e2 ⇓ n3

(ETen)
E ` e1 ⇓ n1 E ` e2 ⇓ n2 n3 = n1 ⊗ n2

E ` e1 ⊗ e2 ⇓ n3

(EFold0)
E ` e2 ⇓ v

E ` fold 0 e1 e2 ⇓ v
(EFoldi)

E ` e1 (fold (i− 1) e1 e2) ⇓ v
E ` fold i e1 e2 ⇓ v

Fig. 14: Operational Semantics of PNBml

Finally, folds are implemented in terms of (repeated) function application until
i reaches the base case, 0.

4.2 Static Type Checking

τ = Net〈i, j〉 (i, j ∈ N) (Net Component)

| τ1 → τ2 (Function Type)

Fig. 15: Types of PNBml

PNBml expressions are statically type-checked, allowing us to rule out errors
before evaluation is performed. Such errors include treating a net as a function,
sequentially composing incompatible nets, or trying to tensor two lambda ab-
stractions. The (monomorphic) types assigned to PNBml expressions are shown
in Fig. 15, with the corresponding typing rules in Fig. 16. As is standard for a
monomorphic language, Γ is simply a sequence of bindings of variables to types,
extended in the TBind and TLam rules.
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(TVar)
Γ (x) = τ

Γ ` x : τ
(TBind)

Γ ` e1 : τ1 Γ, x 7→ τ1 ` e2 : τ2

Γ ` bind x← e1 in e2 : τ2

(TLam)
Γ, x 7→ τ1 ` e : τ2

Γ ` λx : τ1 . e : τ1 → τ2
(TApp)

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

(TTen)
Γ ` e1 : Net〈i, j〉 Γ ` e2 : Net〈k, l〉

Γ ` e1 ⊗ e2 : Net〈i+ k, j + l〉

(TSeq)
Γ ` e1 : Net〈i, j〉 Γ ` e2 : Net〈k, l〉 j = k

Γ ` e1 ; e2 : Net〈i, l〉

(TNet)
n : (i, j)

Γ ` n : Net〈i, j〉
(TFold)

Γ ` e1 : τ → τ Γ ` e2 : τ

Γ ` fold i e1 e2 : τ

Fig. 16: Typing of PNBml Expressions

As an example use of the typing rules, consider composing the three wiring
nets illustrated in Fig. 7 to form a loop, with the expression:

eta ; (id ⊗ id) ; epsilon

We can confirm that the expression is well-composed with the proof illustrated
in Fig. 17 (using η, i, ε in place of eta, id,epsilon).

` η : Net〈0, 2〉

` i : Net〈1, 1〉 ` i : Net〈1, 1〉
` i ⊗ i : Net〈2, 2〉 ` ε : Net〈2, 0〉

` i ⊗ i ; ε : Net〈2, 0〉
` η ; i ⊗ i ; ε : Net〈0, 0〉

Fig. 17: Example typing proof

Our type checker rules out all possible run-time failures for PNBml expres-
sions. Indeed, the novel feature of our type system is the tracking of compo-
nent boundary sizes, achieved by parametrising the Net base type: Net〈l, r〉 by
l, r ∈ N, which describe the left and right boundary sizes respectively.

We say an expression e is well-typed, if there exists a type environment bind-
ing all free variables appearing in e, Γ , and a type, τ , such that Γ ` e : τ .
Furthermore, an operational environment (mapping lambda-bound-variables to
values), E respects a type environment Γ iff the domains of Γ and E are equal
and E point-wise respects Γ , as per Fig. 18.
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dom(E) = dom(Γ ) ∀x ∈ dom(E) ` E(x) : Γ (x)

` E : Γ

n : (i, j)

` n : Net〈i, j〉
` E : Γ Γ, x 7→ τ1 ` e : τ2

` 〈E,λx : τ1 . e〉 : τ1 → τ2

Fig. 18: Typing of values and operational environments

Now we can state our formal notion of “well-typed expressions can always
be evaluated to values”:

Theorem 1 (Well-typed expressions are well-composed).
For a well-typed expression, Γ ` e : τ , and operational environment E:

E : Γ =⇒ E ` e ⇓ v with ` v : τ

Proof. Induction over the structure of the proof of Γ ` e : τ .

5 Conclusions and Future Work

We have shown that the algebra of Petri nets with boundaries can be used to
write natural specification of realistic concurrent, distributed systems. We intro-
duced a high-level DSL, PNBml, which provides an expressive and convenient
setting to specify parametric systems, using several techniques: name binding,
function abstraction, static types and iterated function application. Although
PNBml is a simple, perhaps obvious, language, we have supported our claims by
providing succinct PNBml programs that generate arbitrary instances of well-
known, parametric examples from the literature.

Future work will investigate allowing polymorphic functions (w.r.t. parameter
boundaries), allowing more expressions to be typed. With suitable equational
unification and type inference type annotations could be omitted from lambda
arguments. For example, the “design pattern” of closing a chain of nets using a
loop (e.g. the Hartstone example, §3), could be typed:

close : Net〈n+ 1,m+ 1〉 → Net〈n,m〉

that is, removing the last boundary on either side by connecting them to one
another (here n and m are variables). Another example that could be typed
with polymorphic boundaries (and a suitable algebra on boundary sizes) would
be the n-way tensor:

fold n (λx : Net〈i, j〉 . x ⊗ id) x

which, given an expression x, with type Net〈i, j〉 would perform the n-way tensor
of x with id giving type Net〈i+n, j+n〉. A well-known example of a type system
with similar features is Kennedy’s dimension types [14].
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6 Appendix

6.1 Formal definitions

Definition 2 (Net with boundaries). Let m,n ∈ N. A (1-bounded, marked)
net with boundaries (PNB) [N ]X : m→ n, is an 8-tuple (P, T,X, #, ◦−, −◦, •−, −•)
where:

– (P, T, ◦−, −◦) is a net;
– •− : T → 2m and −• : T → 2n connect each transition to a set of ports on

the left boundary m and right boundary n;
– X ⊆ P is the marking;
– ./ is a symmetric and irreflexive binary relation on T called contention.

The contention relation captures which transitions are not independent and in-
cludes all transitions that are not independent in the underlying net, and those
that share a place on the boundary, i.e. for all t, u ∈ T where t 6= u:

(i) if ◦t ∩ ◦u 6= ∅, then t ./ u;
(ii) if t◦ ∩ u◦ 6= ∅, then t ./ u;

(iii) if •t ∩ •u 6= ∅, then t ./ u;
(iv) if t• ∩ u• 6= ∅, then t ./ u.

In order to sequentially compose nets along a common boundary, we need the
notion of synchronisation. For subsets of transitions of net N , U ⊆ trans(N) we
abuse notation and write ◦U =

⋃
u∈U

◦u, and similarly for U◦, •U and U•. Syn-
chronisations are defined in terms of mutually independent sets of transitions,
which are those sets of transitions that contain no distinct transitions in con-
tention: U ⊆ trans(M) is mutually independent iff ∀t, u ∈ U.t ./ u =⇒ t = u.

Definition 3 (Synchronisations). A synchronisation between two nets M :
l → m, N : m → n is a pair (U, V ), U ⊆ trans(M) and V ⊆ trans(N), of
mutually independent sets of transitions, such that U• = •V .

Synchronisations inherit an ordering from the subset ordering, pointwise:

(U, V ) ⊆ (U ′, V ′)
def
= U ⊆ U ′ ∧ V ⊆ V ′. The trivial synchronisation is (∅,∅). A

synchronisation (U, V ) is minimal when it is not trivial, and for all (U ′, V ′) ⊆
(U, V ), then (U ′, V ′) is trivial or equal to (U, V ). Contention can be lifted to

minimal synchronisations: (U, V ) ./ (U ′, V ′)
def
= U ./ U ′ ∨ V ./ V ′.

Given nets M : l → m, N : m → n, let Synch(M,N) be the set of minimal
synchronisations. We can now define the two ways of composing PNBs.

Definition 4 (Sequential Composition). The sequential composition of nets
M : l → m and N : m → n is a net, M ; N : l → n, with the following
components:

– places(M ; N) is places(M) + places(N).
– trans(M ; N) is Synch(M,N), the set of minimal synchronisations.
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– ∀(U, V ) ∈ Synch(M,N), ◦(U, V )
def
= ◦U + ◦V and (U, V )◦

def
= U◦ + V ◦.

– ∀(U, V ) ∈ Synch(M,N), •(U, V )
def
= •U and (U, V )•

def
= V •.

– Contention on minimal synchronisations is as described in Defn. 3.

Definition 5 (Tensor Composition). The tensor composition of nets M :
l → m and N : k → n is a net, M ⊗ N : l + k → m + n, with the following
components:

– places(M ⊗ N) is places(M) + places(N).
– trans(M ⊗ N) is trans(M) + trans(N).
– the preset, postset, and boundary maps are defined in the obvious way.
– transitions in trans(M) + trans(N) are in contention exactly when they are

in contention in either M or N .

Proposition 6. Both ‘;’-composition and ‘⊗’-composition are associative up-to
isomorphism.

6.2 LTS semantics and compositionality

The classical semantics of a Petri net is an unlabelled transition system, called its
state graph. The states correspond to markings of the Petri net and transitions
correspond to firing of enabled transitions. The sematics of a PNB is a labelled
transition system (LTS), where the states again correspond to markings of the
net and transitions witness the step firing of net transitions. The LTS semantics
of a net N is denoted by JNK.

Following the process calculus tradition, transition labels describe the syn-
chronisations that the net makes with its environment. Specifically, labels record
the boundary ports that the corresponding fired net transitions are connected to.
For example, consider the net illustrated in Fig. 19a, with it’s 1-bounded seman-
tics given in Fig. 19b. State 0 corresponds to the marking illustrated in Fig. 19a,
while state 1 represents the complementary marking in which a token is present
at p1 but not at p0. Here, transition labels are of the form b/b′ where b, b′ ∈ {0, 1}.
In general, a net N : l→ r yields an LTS where transition labels are of the form
2l/2r. The binary string to the left of the / separator records activity on the left
boundary, while the string to the right records the activity on the right bound-
ary: a ‘1’ in the ith position signifies the presence of an interaction on the ith

boundary port. Note that each state will have a self loop labelled by 0l/0r: the
empty set of transitions may always be fired.

Operations for composing nets can also be defined directly on their LTS
semantics, using two variations of the classical product construction of automata.

For synchronisation along common boundary, we have (s ; t)
α/β→ (s′ ; t′) in the

composed LTS exactly when there exist transitions in the components that can

agree in their behaviour common boundary: ∃γ. s
α/γ→ s′ and t

γ/β→ t′. For tensor

there is no synchronisation: (s⊗t) αγ/βδ→ (s′⊗t′) in the product for every s
α/β→ s′

and t
γ/δ→ t′ in the components. These definitions of composition on LTSs follow

from the corresponding operations in the algebra of Span(Graph) [13].
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p0

p1

(a) Buffer net

0 1

0/0 0/0

0/1

1/0

(b) LTS semantics of Buffer net

Fig. 19: Buffer net and its semantics

For example, consider the buffer net of Fig. 19a composed with itself: the
resulting net is illustrated in Fig. 20a. Its semantics can be obtained directly by
reasoning about the behaviour of the net; alternatively, we could compose the
LTS of Fig. 19b with itself, as illustrated in Fig. 20b. Compositionality means
that these two LTSs are isomorphic.

(p0, 0)

(p1, 0)

(p0, 1)

(p1, 1)

(a) Buffer net composed with itself

(0, 0)

(0, 1) (1, 0)

(1, 1)0/0

0/0 0/0

0/0

0/1

0/0

1/1

0/1
1/0

1/
0

(b) Buffer LTS composed with itself

Fig. 20: Buffer net composition and Buffer LTS compostion

Formally, the labelled semantics is defined as follows.

Definition 7 (Labelled Semantics). Let N : m → n be a PNB and X,Y ⊆
PN . Write:

[N ]X
α/β−−→[N ]Y

def
= ∃ mutually independent U ⊆ TN s.t.

[N ]X →U [N ]Y , α = •U & β = U•

It is worth emphasising that no information about precisely which set U of
transitions has been fired is carried by transition labels, merely the effect of the

firing on the boundaries. Notice that we always have [N ]X
0m/0n−−−−→[N ]X , as the

empty set of transitions is vacuously mutually independent.
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6.3 Component Net Definitions

Components nets are specified using a simple syntax: giving the name, set of
places, left/right boundary ports and transitions of the net. Places are specified
as pairs consiting of a name and token presence (1) or absence (0). Boundary
ports are named, for the left and right boundaries. Finally, the transitions of the
component is given as a set of sets of “ports”. Ports can be: boundary ports (left
or right) or a place port designated by a prefix or suffix ‘>’ or a suffix ‘?’. A
prefix ‘>’ indicates the input port of a place, a suffix ‘?’ indicates a query port
(non-consuming read) and finally a suffix ‘>’ indicates the output port of the
place.

6.4 DAC

NET worker

PLACES [ <init ,1>

, <beenForked ,0>

, <forkedChild ,0>

, <joinedChild ,0>

, <done ,0> ]

LBOUNDS [ forkMe

, joinMe ]

RBOUNDS [ forkChild

, joinChild ]

TRANS { {init >, forkMe , >beenForked}

, {beenForked >, >joinedChild} -- Can choose not to fork child

, {beenForked >, forkChild , >forkedChild}

, {forkedChild >, joinChild , >joinedChild}

, {joinedChild >, joinMe , >done} }

NET term

PLACES []

LBOUNDS [fork , join]

RBOUNDS []

TRANS { }

NET controller

PLACES [ <init ,1>

, <forked ,0>

, <done ,0> ]

LBOUNDS []

RBOUNDS [ forkChild

, joinChild ]

TRANS { {init >, forkChild , >forked}

, {forked >, joinChild , >done} }
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6.5 Hartstone

NET task

PLACES [ <stopped ,1>

, <started ,0>

]

LBOUNDS [ startMe , stopMe ]

RBOUNDS []

TRANS { {stopped >, startMe , >started}

, {started >, stopMe , >stopped}

}

NET controller

PLACES [ <readyToStart ,1>

, <readyToStop ,0>

]

LBOUNDS [ reqIn ]

RBOUNDS [ startTask , stopTask , reqOut ]

TRANS { {readyToStart >, reqIn , startTask , reqOut , >readyToStop}

, {readyToStop >, reqIn , stopTask , reqOut , >readyToStart}

}

NET master

PLACES [ <ready ,1>

, <started ,0>

]

LBOUNDS [gonearound]

RBOUNDS [request]

TRANS { -- Initially start tasks

{ready >, request , gonearound , >started}

-- then stop them , allowing restart ...

, {started >, request , gonearound , >ready}

-- or stop them , without alowing restart

, {started >, request , gonearound}

}
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6.6 Dining Philosophers

NET fk

PLACES [ <present ,1> ]

LBOUNDS [takel , putl]

RBOUNDS [taker , putr]

TRANS { {takel , present >}

, {taker , present >}

, {putl , >present}

, {putr , >present}

}

NET ph

PLACES [ <none ,1>

, <left ,0>

, <right ,0>

, <both ,0>

]

LBOUNDS [takel , putl]

RBOUNDS [taker , putr]

TRANS { {none >, takel , >left}

, {none >, taker , >right}

, {left >, taker , >both}

, {right >, takel , >both}

, {both >, putl , putr , >none}

}

-- lend/rend can be formed from eta ; (id * eta * id) and

-- (id * epsilon * id) ; epsilon , but it is neater/simpler to explicitly

-- construct them here.

NET lend

PLACES []

LBOUNDS []

RBOUNDS [ a, b, c, d ]

TRANS { {a, d}

, {b, c}

}

NET rend

PLACES []

LBOUNDS [ a, b, c, d ]

RBOUNDS []

TRANS { {a, d}

, {b, c}

}
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6.7 Cyclic Scheduler

NET scheduler

PLACES [ <init ,1>

, <gotSignal ,0>

, <signalledNext ,0>

, <finishedWaitingForSignal ,0>

, <signalledWaitingForFinish ,0>

]

LBOUNDS [ signalMe , signalNext ]

RBOUNDS [ startTask , taskFinished ]

TRANS { -- Receive a start signal ...

{init >, signalMe , >gotSignal}

-- Start our task and send the signal on to the next scheduler.

, {gotSignal >, startTask , signalNext , >signalledNext}

-- We can receive the task finished , or start again signals in either

-- order , but we must receive both before starting again.

, {signalledNext >, taskFinished , >finishedWaitingForSignal}

, {signalledNext >, signalMe , >signalledWaitingForFinish}

, {finishedWaitingForSignal >, signalMe , >gotSignal}

, {signalledWaitingForFinish >, taskFinished , >gotSignal}

}

NET starter

PLACES [<primed ,1>]

LBOUNDS []

RBOUNDS [send ,recv]

TRANS { {primed >, send}

, {recv , send}

}
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6.8 n-bit Counter

NET onebit

PLACES [ <zero ,1>

, <one ,0>

]

LBOUNDS [linc , ldec , lnotfull , lfull]

RBOUNDS [rinc , rdec , rnotfull , rfull]

TRANS { { zero >, linc , >one }

, { one >, rinc , >zero }

, { one >, ldec , >zero }

, { ldec , rdec }

, { lnotfull , zero? }

, { lnotfull , rnotfull }

, { lfull , one?, rfull }

}

NET zerobit

PLACES []

LBOUNDS [inc , dec , notfull , full]

RBOUNDS []

TRANS { { full } }

29


	A Programming Language for Spatial Distribution of Net Systems

