
Compositional Reachability in Petri Nets

Julian Rathke, Pawe l Sobociński, and Owen Stephens

ECS, University of Southampton, UK

Abstract. We introduce a divide-and-conquer algorithm for a modified
version of the reachability/coverability problem in 1-bounded Petri nets
that relies on the compositional algebra of nets with boundaries: we
consider the algebraic decomposition of the net of interest as part of the
input. We formally prove the correctness of the technique and contrast
the performance of our implementation with state-of-the-art tools that
exploit partial order reduction techniques on the global net.

Introduction

For finite-state Petri nets, the reachability problem—i.e. whether some target
marking is reachable from the initial marking— is PSPACE-complete [4]. While
compositional approaches to model checking were identified by the founders of
the discipline [5] as a way of combating state-explosion, the large majority of
model checkers work with the global statespace – which, in the case of Petri
nets, means computing the state graph: a transition system where the states
are markings and transitions reflect the firing of net-transitions. Of course, state
graphs of large nets are prohibitively large to build naively; much of the research
effort to date has focussed on taming the state explosion problem by exploiting
symmetries and partial order reduction techniques [9, 12,16,18,25].

Most real-life concurrent systems, however, are regular in their structure:
they are naturally specified as a composition of relatively simple, often repeated,
components. We contend that by allowing model checkers access to this high
level information, we can exploit divide and conquer techniques to improve per-
formance. The tool Penrose, described in this paper, exploits the high-level
structure of a net, which is provided as input, to perform reachability check-
ing. Penrose is written in Haskell and has not been optimised; despite this, it
outperforms mature, state-of-the-art tools in a number of well-known examples.

Let us consider how a divide and conquer approach can help in checking
reachability; consider a net, N , composed of two subnets, N1 and N2, with dis-
joint places. Any reachability question on N , stated as a desired marking, can be
restated as a pair of desired markings on N1 and N2. Checking this pair of reach-
ability questions independently is more efficient than directly checking reacha-
bility in N , since state graph size is exponential in the number of places of the
corresponding net. However, such a naive approach is unsound: N2’s behaviour
is constrained by its interactions with N1, and vice versa. What is required is a
representation of the behaviour of the subnet N2, say, in which its dependency

and effect upon its environment (the rest of the system) is accounted for. The
notion of a Petri Net with Boundaries provides such a representation.

Roughly speaking, a Petri Net with Boundaries [2] (PNB) represents a sub-
net that is to be placed within a larger environment. The key feature of this
model is a representation of how a net’s transitions may connect with its en-
vironment, via “boundary ports”. The state graph of a PNB is an automaton
in which transition labels record interactions on these boundary ports. Using
PNBs, reachability checking of a composed net, N , formed of N1 and N2, can
be achieved by independently checking the pair of reachability problems on N1

and N2 using their labelled state graphs.
Once the state graph of a component PNB has been built, what remains

important, in terms of checking reachability of the larger system is only its
boundary interactions. This means that state graphs may be minimised with
respect to behaviour that does not interact on a boundary. Moreover, these
minimised graphs may be further minimised after composition. Our technique
exploits this fact to keep the size of state graphs as small as possible. This may
appear counter-intuitive as a means of obtaining efficiency, as minimisation is
known to be expensive. Judicious use of memoisation comes to the fore here: we
target our technique at a class of regular systems that feature many repeated
component nets. As such, we expect many repeated reachability checks on the
component nets and, crucially, many repeated compositions of such components.

Structure of the paper. In §1 we present the necessary background on Petri
Nets with Boundaries, followed in §2 with definitions of the automata encoding
reachability in PNBs. The details of our algorithm are given in §3 and in §4
we describe its implementation and detail our experimental results. Finally, we
present a proof of correctness of the technique §5 and conclude in §6.

1 Background

In this paper, all Petri nets are assumed to be 1-bounded (a.k.a. elementary net
systems): there is at most one token at each place. They are closely related to 1-
safe nets, indeed, any 1-safe net is 1-bounded. However, 1-bounded nets are not
necessarily 1-safe: the semantics of 1-bounded nets simply prohibits the firing of
a transition that would violate the restriction during any execution.

The compositional algebra of Petri nets with boundaries (PNB) is the the-
oretical workhorse that enables our approach. Here we only give a cursory
overview: for formal details, the reader is referred to [2, 21].

A PNB is a Petri net with extra structure: two finite ordinals of boundary
ports, to which net transitions can connect. Intuitively, transitions connected
to a boundary port are not yet completely specified. The two sets of ports are
drawn, from top to bottom, on the left and right hand sides of an enclosing
box. An example is on the left in Fig. 1: here both boundaries consist of one
port. We write P : (1, 1) to mean that P is a PNB with both boundaries of size
1. Differently to [2, 21] we consider “vanilla” PNBs to be unmarked; in §2 we
introduce a marked variant that contains both an initial and a target marking.

2

p

q

Fig. 1: An example PNB and marked PNB (1, 1)

There are two operations for composing PNBs: synchronisation on a common
boundary (;) and a non-commutative, parallel composition that we call tensor
(⊗). The most interesting operation is synchronisation: we refer to [2] for the
formalities, but the graphical intuition shown in Fig. 2 suffices for most exam-
ples. Note that the size of the right boundary of P agrees with the size of the
left boundary of Q—nets can be composed iff they agree on the size of their in-
termediate boundary. Given X : (k, l) and Y : (l,m), the composition is written
X ; Y : (k,m). Transitions of the composed net—called minimal synchronisa-
tions—are, in general, sets of transitions of the two components. In Fig. 2, the
transition {t, a} results from synchronising t and a. Transition t can synchronise
both with a and b; indeed, both choices are taken into account (b also synchro-
nises with u). Transition c has no complementary transition to synchronise with
and thus no composite transition results. Finally, v does not connect to any
places, only to the fourth boundary port, and is thus synchronised with d.

t

u

v

P : (0, 4)

a

b

c

d

Q : (4, 0)

{t, a}

{t, u, b}

{v, d}

P ; Q : (0, 0)

Fig. 2: Example synchronisation

The second PNB composition operation, tensor, is graphically represented
by “stacking” one net on another; intuitively, it is a non-communicating parallel
composition. Differently from synchronisation, any two nets can be tensored:
given nets X : (k, l) and Y : (m,n), we have X ⊗ Y : (k+m, l+n). Both ‘;’ and
‘⊗’ are associative up-to-isomorphism of PNBs, but neither is commutative.

3

2 From Marked Nets to Automata

A marked PNB consists of a PNB together with two subsets of net-places: the
initial and target marking. Graphically, the places belonging to an initial marking
are decorated with a token, whilst those belonging to the target marking are
shaded. A place can be in both, only one, or neither the initial and a target
marking. An example of a marked net is illustrated in the right part of Fig. 1.

Ordinary PNBs have a labelled transition system (LTS) semantics that cap-
tures the step semantics of the underlying net. The labels record the interactions
on the boundaries, as we explain below with the aid of an example. Consider the
LTS in the left part of Fig. 3 that corresponds to the left net in Fig. 1.

Let B = {0, 1} and consider a PNB P : (k, l). The states of its LTS correspond
to markings of P , the transitions to the firings of sets of independent, enabled
transitions. Transition labels come from the set Bk × Bl. Throughout the paper
we write α/β for (α, β) ∈ Bk × Bl. A transition labelled with α/β indicates the
firing of a set of transitions that is connected to ports on the left as indicated by
the 1s in α, and on the right by the 1s in β. For example, in the LTS of Fig. 3, the
rightmost transition firing in the PNB of Fig. 1 is represented by the transition
labelled 0/1 in the LTS.

{p} {q}

0/0 0/0

0/1

1/0

{p} {q}

0/0 0/0

0/1

1/0

Fig. 3: LTS/NFA semantics of the PNB and marked PNB of Fig. 1

Just as a PNB gives rise to an LTS, a marked PNB gives rise to a non-
deterministic finite automaton (NFA). The states and transitions are as de-
scribed above; the initial state is the state representing the initial marking, while
the final state is the state representing the target marking.

The NFAs that arise from PNBs can be composed using operations corre-
sponding to PNB compositions; a specialised nomenclature is therefore useful:

Definition 1. A non-deterministic finite automaton with boundaries (NFAB)
A : (k, l) is a non-deterministic finite automaton A with alphabet Bk × Bl. Let
L(A) ⊆ (Bk × Bl)∗ denote the language of A.

Given a PNB P : (k, l), we denote the resulting NFAB JP K : (k, l). Note
that any ordinary marked net, N , can be regarded as a PNB, N : (0, 0) with
no boundaries. The resulting NFAB JNK has the alphabet B0 × B0, which is
the singleton—this is precisely the state graph of N w.r.t. step semantics. The
following observation, which is central to our approach, is immediate.

Proposition 2. Supposed that N is a marked net. Then the final marking is
reachable from the initial marking iff L(JNK) 6= ∅ ut

4

Finally, we need to explain how NFABs are composed. If A : (k, l), B : (l,m)
and C : (n, o) are NFABs then both A ; B : (k,m) and A ⊗ C : (k+n, l+o) have
as states pairs (a, b) where a is a state of A and b is a state of B. Initial and final
states are simply the product of the initial and final states of the component
NFABs. The only difference is how the transition relations are defined:

a
α/γ−−→ a′ b

γ/β−−→ b′

(;)

(a, b)
α/β−−→ (a′, b′)

a
α/β−−→ a′ b

γ/δ−−→ b′

(⊗)

(a, b)
αγ/βδ−−−−→ (a′, b′)

The following is straightforward to show and builds on known compositionality
properties of PNBs [2].

Proposition 3 (Compositionality). Given PNBs P , Q, we have JP ; QK ∼=
JP K ; JQK and JP ⊗QK ∼= JP K ⊗ JQK, where ∼= is isomorphism of automata,
defined in the obvious way as bijective mappings on states and transitions.

Of particular interest to our approach are NFA transitions witnessing the
firing of net transitions that are not connected to any boundary ports. Thus we

let τk,l
def
= 0k/0l. We will refer to τk,l as a τ -move or silent move.

3 Compositional Reachability

In this section we explain our technique for compositional reachability checking
and present our algorithm. We will use the following running example, which
features a net that is particularly suitable for our approach.

B4 = > ; b1 ; b1 ; b1 ; b1 ; ⊥ > b1 ⊥

Fig. 4: The net B4 as a composition of nets >, b1 and ⊥.

Example 4. Consider the marked PNB, B4, shown in Fig. 4 that models a 4 place
buffer [9]. It enjoys a simple, regular structure, yet the number of transitions that
need to be fired in order to reach the target marking is quadratic in the size of
the buffer1. Using marked PNBs, we can express B4 as:

> ; (b1 ; (b1 ; (b1 ; (b1 ; ⊥)))) (1)

1 Precisely, the length of the minimal firing sequence of Bi is the ith triangle number.

5

Our procedure takes a decomposition of a net as an input: roughly an ex-
pression akin to (1), expressing a net as a composition of simple components.
We represent decompositions using wiring expressions; a wiring expression is the
abstract syntax tree, t, of a PNB expression, where internal nodes are labelled
with either ; or ⊗, and leaves are (possibly repeated) variables.

T ::= x | T ; T | T ⊗ T

Now, a wiring expression together with an assignment map, V, taking variables
to marked PNBs, can be evaluated recursively to obtain a marked PNB, JtKV :

JxKV
def
= V(x) Jt1 ; t2KV

def
= Jt1KV ; Jt2KV Jt1 ⊗ t2KV

def
= Jt1KV ⊗ Jt2KV

We assume that variable assignments are compatible with t, in the sense that
only nets with compatible boundaries are composed; in recent work, we used a
simple type system to ensure this [24]. Given a net N : (k, l), we say that (t,V)
is a wiring decomposition of N if JtKV ∼= N .

Example 5. The following are the wiring expression and variable assignment that
correspond to (1):

t = x1 ; (x2 ; (x2 ; (x2 ; (x2 ; x3)))) V = {x1 7→ >, x2 7→ b1, x3 7→ ⊥} (2)

observe that JtKV is B4, shown in the left side of Fig. 4; (t,V) is therefore a
wiring decomposition of B4.

Consider any net N , together with corresponding initial and target markings.
Given any ordinary PNB expression for N , notice that we can extend it into a
wiring decomposition: first by translating the expression into a wiring expression,
second by translating the initial and target markings of N component-wise into
marked PNBs, that we bind to the variables. The specification of the reachability
problem is thus naturally compositional.

The core idea of our algorithm is to convert a wiring decomposition (t,V)
of a net N to an—ideally small—NFAB that represents the “protocol” that N
must adhere to w.r.t. its context (i.e. the nets connected to its boundaries), in
order to reach its local target marking. The key property exploited by the algo-
rithm is that weak language equivalence is a congruence2 (Proposition 8): any
weak language-preserving modifications can be made to a PNB’s NFAB whilst
ensuring a faithful representation of all interactions the PNB must perform to
reach its target marking. Showing that weak language equivalence is a congru-
ence is thus the key technical ingredient needed to show the correctness of our
technique; this is the topic of §5.

Concretely, given an NFAB we perform (i) τ -closure, ignoring internal moves,
and (ii) NFA minimisation to prune the statespace, preserving language equiva-
lence. We leverage the structure of wiring decompositions by using memoisation
to prevent repeated computation. Our algorithm maintains two maps:

2 The adjective ‘weak’ refers to the forgetting of the τ -moves. See §5 for the formal
definition.

6

1. knownNetNFAs, from component nets to their corresponding reduced NFABs,
2. knownNFAComps, from two NFABs and composition type, to reduced NFABs.

The second memoisation map is checked for membership up-to language-
equivalence: (n1, n2, Op) ∈ knownNFAComps is true if knownNFAComps contains
an entry (n′1, n

′
2, Op) such that n1 ∼ n′1 and n2 ∼ n′2, where ∼ is language

equivalence. The essence of this optimisation is that if we perform a (potentially
expensive) composition and reduction on a pair of NFABs, we never repeat this
computation for any pair of NFABs that are pairwise language equivalent.

The core algorithm is given in Fig. 5, and we briefly outline its steps here.
The input wiring decomposition is traversed; each unique leaf (component net)
is converted to its NFAB, which is then τ -closed and reduced, with memoisation
(Line 3) preventing repeated performance of this conversion for equal compo-
nents. On composition nodes, the procedure recurses on both child branches, to
obtain a (reduced) NFAB for each; then, if the pair of NFABs is unique (up-
to language-equivalence) they are composed using the appropriate operation on
NFABs, before being τ -closed and reduced. Again, memoisation (Line 13) pre-
vents unnecessary repeated computation.

Require: knownNetNFAs, knownNFAComps initially empty
1: procedure wdToNFA(t)
2: if t is a PNB then
3: if t ∈ knownNetNFAs then
4: return knownNetNFAs[t]
5: else
6: n← reduce(τ -close(netToNFA(t)))
7: knownNetNFAs[t] := n
8: return n
9: end if

10: else . t is (t1, t2, OP)
11: n1 ← wdToNFA(t1)
12: n2 ← wdToNFA(t2)
13: if (n1, n2, OP) ∈ knownNFAComps then . Up-to language equivalence
14: return knownNFAComps[(n1, n2, OP)]
15: else
16: n← reduce(τ -close(n1 OP n2))
17: knownNFAComps[(n1, n2, OP)] := n
18: return n
19: end if
20: end if
21: end procedure

Fig. 5: Core Algorithm

Now since any ordinary net N can be considered as a PNB with no bound-
aries, running our algorithm on any wiring decomposition of N as input will

7

construct an NFAB with the singleton alphabet {τ0,0}. Up to weak language
equivalence there are only two such NFABs, both with one state that is either
accepting (indicating a reachable desired marking) or non-accepting (indicating
an unreachable desired marking). Therefore, running our core algorithm on a
wiring decomposition of N decides the classical reachability problem for N .

It should be highlighted that our algorithm decides a modified version of
the reachability problem: we take a wiring decomposition as input. When run
on the trivial decomposition, the performance would typically be unsatisfactory
since, for example, no partial order reduction techniques are employed when
generating the state graph. The scalability of our algorithm thus depends on
finding efficient decompositions. In our experience, finding suitable candidate
decompositions is not difficult: concurrent and distributed systems are typically
designed, and described, in a component-wise, rather than monolithic manner.

4 Implementation and Results

The core algorithm described in the previous section has been implemented in
Haskell, as part of the Penrose tool. In the implementation we use current
state-of-the-art algorithms for both: language-equivalence checking via bisimu-
lation up-to techniques due to Bonchi and Pous [1], and NFA minimisation using
forward and backwards variants of simulation of Clemente and Mayr [15].

Example 6. The running time of our implementation on the buffer nets of our
running example is linear w.r.t. the size of the input net. Indeed, each additional
component simply leads to another (successful) memoisation-map lookup, with
constant cost. Contrast this with the fact that the minimum firing sequence is
quadratic w.r.t. the size of the buffer, as described in Exm. 4. Checking reacha-
bility for buffer nets thus asymptotically outperforms approaches based on firing
transitions in the global net: see the first five rows in the results Table 1.

As we have explained in §3, Penrose takes as input a wiring decomposition;
Since problem descriptions in the literature are naturally described in terms of
their constituent components, it is little work to arrive at high-level descrip-
tions using the DSL recently introduced by the 2nd and 3rd authors [24]. The
DSL programs evaluate to a wiring expression, that we have used as inputs to
Penrose; alternatively, they can be evaluated to monolithic nets, which we have
used as input to other tools for performance comparisons. Indeed, using Penrose

it is possible to generate arbitrary instances of commonly used benchmarks.
The relative performance of Penrose was evaluated 3 by comparing it with

the current state-of-the-art tools, all of which use unfolding-based approaches:

3 All experiments were run on an Ubuntu Linux virtual machine (4-core 32-bit CPU,
8GB RAM) hosted on an Intel i7-2600 3.40GHz CPU, 16GB of RAM, running 64-
bit Ubuntu Linux4. Tool performance was recorded using the standard Unix time

command, measuring total (wall-clock) time and peak memory usage.
4 Some tools required a 32-bit platform, hence the virtual machine.

8

1. LOLA [20], an established tool and winner of the reachability category of
2013 Petri Net model checking competition,

2. The PUNF5 unfolder, which uses parallelisation techniques from [10] and
CLP6 checker, which uses linear-programming techniques from [14],

3. CUNF [19] unfolder, a recently-introduced tool7, using the CNA checker.

In Table 1, T indicates a time-out (5 minutes), M denotes memory-exhaustion
(8GB) and / marks an incorrect result; the best performance of each problem
instance is highlighted.

As mentioned, Penrose directly computes using the particular wiring decom-
position, (t,V), that specifies each problem; all other tools were provided input
that was generated by first computing JtKV , and then converting into suitable
format8. The time taken for this conversion was not included in the performance
benchmarking—only the processing time of the individual tools was recorded.

t1

t2

Fig. 6: iter-choice net

The majority of problems in Table 1 are taken
from Corbett’s [6] benchmarks, except those
marked with a ∗, which we briefly discuss here:
counter is taken from [24], and models a dis-
tributed n-bit counter. It is an unsafe net, lead-
ing to incorrect results from CLP/CNA. repli-
cator is taken from [22], modelling a sequence
of components that can output an unbounded
number of tokens at their right boundary after
receiving a single token on their left boundary.
Again, it is an unsafe net. Taken from [12], iter-
choice models a sequence of transition choices. A
single component is illusrated in Fig. 6, the transition choice is between t1 and t2.
Due to an exponentially-sized unfolding, the results show that moderately-sized
instances9 of iter-choice cannot be handled by the tested tools. Penrose, on the
other hand, is able to handle very large instances quickly. Merged Processes [12]
were designed to avoid such exponential unfoldings.

The time-vs-problem size results for Penrose are plotted in Fig. 7. There
is a clear distinction between the scalable examples, and those that are (much)
less scalable. The causes of the poor performance include increase in (language
inequivalent) NFA sizes, as the wiring decomposition is traversed: each new
NFA grows the memoisation map, and larger NFAs take longer to check for
language (in)equivalence. The examples with good performance (e.g. Exm. 4)
quickly reach fixed-points w.r.t. composition, in that no new NFAs are ever
generated after a certain point; indeed, the buffer reaches a fixed point at n = 1.

Statespace growth is unavoidable in systems such as the counter; it is an
inherent problem with the compositional approach. In this case, avoiding the

5 http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/
6 http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/clp/
7 http://code.google.com/p/cunf/
8 Either LL NET format or LOLA’s input format.
9 Checking for an alternating taken/not-taken marking

9

http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/
http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/clp/
http://code.google.com/p/cunf/

Table 1: Time and Memory results
Problem Time (s) Max Resident (MB)

name size LOLA CLP CNA Penrose LOLA CLP CNA Penrose

buffer 8 0.001 0.003 0.017 0.001 7.51 33.30 38.45 14.36
buffer 32 0.001 0.013 0.824 0.001 7.51 34.49 48.09 14.35
buffer 512 0.058 T M 0.001 83.44 T M 14.40
buffer 4096 T T M 0.002 T T M 14.70
buffer 32768 T T M 0.005 T T M 16.07
over 8 31.039 0.008 1.071 0.003 3812.00 37.63 141.85 16.53
over 32 M T M 0.003 M T M 16.52
over 512 M T M 0.003 M T M 16.52
over 4096 M T M 0.003 M T M 16.53
over 32768 M T M 0.004 M T M 17.85
dac 8 0.001 0.003 0.017 0.001 7.51 33.28 38.85 15.37
dac 32 0.001 0.005 0.028 0.001 7.50 34.50 49.45 15.34
dac 512 0.005 T 255.847 0.001 20.62 T 6012.00 15.36
dac 4096 2.462 T M 0.002 166.07 T M 15.62
dac 32768 T T M 0.009 T T M 16.91

philo 8 0.002 0.003 0.016 0.004 8.86 33.22 38.54 16.98
philo 32 M 0.003 0.017 0.004 M 33.53 40.87 16.97
philo 512 M 0.020 0.086 0.004 M 41.69 290.77 16.90
philo 4096 M 7.853 M 0.004 M 172.76 M 17.13
philo 32768 M T M 0.005 M T M 18.32

hartstone 8 0.000 0.002 / 0.002 7.51 33.05 / 15.48
hartstone 32 0.001 0.002 / 0.002 7.52 33.22 / 15.48
hartstone 512 0.002 0.005 / 0.001 17.82 36.38 / 15.49
hartstone 4096 0.044 0.029 / 0.002 96.27 58.15 / 15.74
hartstone 32768 56.050 3.008 M 0.003 727.63 278.23 M 17.10

iter-choice∗ 8 0.006 5.025 19.062 0.002 36.37 465.17 1570.64 15.34
iter-choice∗ 32 M T T 0.002 M T T 15.34
iter-choice∗ 512 M T T 0.002 M T T 15.38
iter-choice∗ 4096 M T T 0.002 M T T 15.56
iter-choice∗ 32768 M T T 0.003 M T T 16.95
replicator∗ 8 0.001 / 0.016 0.001 7.51 / 38.15 15.39
replicator∗ 32 0.001 / 0.017 0.001 7.51 / 39.41 15.40
replicator∗ 512 0.002 / 1.023 0.001 14.72 / 77.87 15.41
replicator∗ 4096 0.062 / 64.046 0.002 86.85 / 3256.00 15.56
replicator∗ 32768 91.646 / M 0.006 1524.50 / M 16.97
counter∗ 8 0.001 / / 0.050 7.51 / / 20.61
counter∗ 16 0.000 / / 4.056 7.51 / / 22.52
counter∗ 32 0.001 / / 46.027 7.51 / / 39.66
counter∗ 64 0.001 / / T 8.60 / / T

token-ring 8 0.001 0.007 0.071 1.024 7.51 39.96 89.81 20.74
token-ring 16 1.824 T T 12.034 318.08 T T 24.77
token-ring 32 M T T 133.636 M T T 39.65
token-ring 64 M T T T M T T T

10

20 22 24 26 28 210 212 214 216

10−3

10−2

10−1

100

101

102

103

Problem Size

T
im

e
(s

)

token-ring
counter∗

philo
over

iterated-choice∗
replicator∗

dac

hartstone

buffer

Fig. 7: Time vs Problem size for Penrose

slowdown could be achieved by observing a monotone increase in state size and
abandoning the component-wise approach, falling back to other techniques.

It could be argued that the playing field is unfair: Penrose uses a formal
description of the decomposition of a problem at hand into smaller components
while other tools take a global, monolithic net as input. This is, however, pre-
cisely our point: there is no reason for model checkers not to take advantage of
compositional descriptions–it is how real systems are designed and described.

5 Proof of Correctness

In this section we outline a proof that the algorithm presented in Fig. 5 is correct.
Given NFABs A,B : (k, l), A and B are said to be (strong) language equivalent,
written A ∼ B, if L(A) = L(B). The following result is simple to show, using
the definitions of ; and ⊗ on NFABs.

Proposition 7 (Strong language equivalence is a congruence). Suppose
that A and A′ are NFABs and A ∼ A′. Then the following hold, where in

11

each point below, B ranges over those NFAB where the composition is defined.

(i)A ; B ∼ A′ ; B (ii)B ; A ∼ B ; A′

(iii)A ⊗ B ∼ A′ ⊗ B (iv)B ⊗ A ∼ B ⊗ A′ ut

Now let −̂ : (Bk × Bl)∗ → (Bk × Bl − {τk,l})∗ be the unique monoid homo-
morphism where, on elements x of Bk × Bl, x̂ = ε if x = τk,l and x otherwise.
Intuitively, x̂ results from stripping the silent moves from x. Given a NFAB

A : (k, l) we define Lτ (A)
def
= {x̂ | x ∈ L(A)}. NFABs A,B : (k, l) are said to be

weak language equivalent, written A ≈ B, when Lτ (A) = Lτ (B).

An NFAB A : (k, l) is said to be reflexive if for all states a ∈ A we have

a loop transition a
τk,l−−→ a. When we restrict our attention to reflexive NFABs,

also weak language equivalence is a congruence.

Proposition 8. Suppose that A and A′ are reflexive NFABs and A ≈ A′. Then
the following hold, where at each point below B ranges those over reflexive NFABs
where the composition is defined.

(i)A ; B ≈ A′ ; B (ii)B ; A ≈ B ; A′

(iii)A ⊗ B ≈ A′ ⊗ B (iv)B ⊗ A ≈ B ⊗ A′ ut

Any NFAB that results from a marked PNB is reflexive, since the empty set
of transitions can fire at any marking, yielding a τ -move in the underlying NFAB.
The reductions performed in Fig. 5 replace reflexive NFABs with smaller, weak
language equivalent automata. Correctness is a straightforward consequence.

Theorem 9. The algorithm in Fig. 5 is correct: the computed NFAB is weak
language equivalent to the semantics of the corresponding global net. ut

6 Related Work and Discussion

We introduced a technique for checking reachability that takes a decomposition
of a net as input and relies on the use of weak language equivalence to discard
local state. The compositional approach was briefly discussed in [22] and in the
technical report [23], where further examples are described in detail. Initial ef-
forts were based on determinisation, which was considerably more expensive than
our current use of NFA minimisation [15] and language equivalence checking [1].

The algebra of automata with boundaries used in this paper is an instance
of the algebra of Span(Graph) [11]. The goal of the more recent work [2, 3, 21]
was to lift this algebra to the level of nets in a compositional way and explore
connections with process algebra: our approach ignores local state and focusses
only on external interactions: here we were inspired by the ideas of Milner [17].

The tools that we have used in order to compare our performance are based on
the unfolding approach pioneered by McMillan [16]. The algorithm to compute
finite complete prefix was improved in [9,13]. Unfoldings carry more information
about the computations of nets than merely reachability, for instance, allowing
LTL model checking [7]. For an overview of the extensive field see [8].

12

References

1. F. Bonchi and D. Pous. Checking NFA Equivalence with Bisimulations up to
Congruence. In PoPL ‘13.

2. R. Bruni, H. Melgratti, U. Montanari, and P. Sobociński. Connector algebras for
C/E and P/T nets’ Interactions. Logical Methods in Computer Science, 9(3), 2013.

3. R. Bruni, H. C. Melgratti, and U. Montanari. A connector algebra for P/T nets
interactions. In CONCUR, 2011.

4. A. Cheng, J. Esparza, and J. Palsberg. Complexity results for 1-safe nets. In
FSTTCS, volume 761 of LNCS, pages 326–337, 1993.

5. E. M. Clarke, D. Long, and K. McMillan. Compositional model checking. In
LiCS‘89, pages 352–362, 1989.

6. J. C. Corbett. Evaluating Deadlock Detection Methods for Concurrent Software.
IEEE Transactions on Software Engineering, 22(3):161–180, 1996.

7. J. Esparza and K. Heljanko. Implementing LTL model checking with net unfold-
ings. In SPIN, volume 2057 of LNCS, pages 37–56, 2001.

8. J. Esparza and K. Heljanko. Unfoldings: a partial-order approach to model checking.
Springer, 2008.

9. J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding
algorithm. Form Method Syst Des, 30(3):285–210, 2002.

10. K. Heljanko, V. Khomenko, and M. Koutny. Parallelisation of the Petri net Un-
folding Algorithm. In TACAS ‘02, pages 371–385, 2002.

11. P. Katis, N. Sabadini, and R. F. C. Walters. Span(Graph): an algebra of transition
systems. In AMAST ‘97.

12. V. Khomenko, A. Kondratyev, M. Koutny, and W. Vogler. Merged Processes — A
New Condensed Representation of Petri Net Behaviour. In CONCUR ‘05, 2005.

13. V. Khomenko, M. Koutny, and W. Vogler. Canonical prefixes of Petri net unfold-
ings. Acta Inform., 40(2):95–118, 2003.

14. M. Koutny and V. Khomenko. Linear Programming Deadlock Checking Using
Partial Order Dependencies. Technical report, Newcastle University, 2000.

15. R. Mayr and L. Clemente. Advanced Automata Minimization. In POPL ’13.
16. K. McMillan. A technique of a state space search based on unfolding. Form Method

Syst Des, 6(1):45–65, 1995.
17. R. Milner. A Calculus of Communicating Systems. Prentice Hall, 1989.
18. M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures and Domains,

Part I. Theoretical Computer Science, 13(1):85–108, Jan. 1981.
19. C. Rodŕıguez and S. Schwoon. Cunf: A Tool for Unfolding and Verifying Petri

Nets with Read Arcs. In ATVA ’13, pages 492–495, 2013.
20. K. Schmidt. LoLA: A Low Level Analyser. In ICATPN ’00, June 2000.
21. P. Sobociński. Representations of Petri net interactions. In CONCUR ‘10, 2010.
22. P. Sobociński and O. Stephens. Penrose: Putting Compositionality to Work for

Petri Net Reachability. In CALCO Tools ’13, pages 346–352. Springer, 2013.
23. P. Sobociński and O. Stephens. Reachability via compositionality in Petri nets.

arXiv:1303.1399v1, 2013.
24. P. Sobociński and O. Stephens. A Programming Language for Spatial Distribution

of Net Systems. In ICATPN ’14, pages 150–169. Springer, 2014.
25. P. Starke. Reachability analysis of Petri nets using symmetries. Systems Analysis

Modelling Simulation, 4/5:292–303, 1991.

13

	Compositional Reachability in Petri Nets

