
Penrose: Putting Compositionality To Work For
Petri Net Reachability

Pawe l Sobociński and Owen Stephens

ECS, University of Southampton, UK

Abstract. Recent work by the authors introduced a technique for reach-
ability checking in Petri Nets, exploiting compositionality to increase
performance for some well-known examples. We introduce a tool that
uses this technique, Penrose, discuss some design details in its imple-
mentation, and identify potential future improvements.

1 Introduction

The famous example of Dining Philosophers has n philosophers around a dining
table, contending for the use of shared forks, in order to eat. A Petri net1 repre-
sentation of three dining philosophers is given in Fig. 1. The graphical notation
is non-standard, with “directed” places and undirected links2.

Independent sets of transitions of a (1 bounded) Petri net can fire if the
current marking contains tokens in the source place(s) and none in the target
place(s). Reachability is the problem of determining if a particular marking—a
set of places that contain a token—can be reached by firing transitions, starting
from some initial marking. In this paper we introduce Penrose3 a tool, written
in Haskell, for solving reachability in Petri nets, via an algebraic approach.

P1

P2P3

F1 F2

F3

Fig. 1: Petri net representing a table of three dining philosophers.

1 Here we consider 1-bounded Petri nets, aka C/E nets or Elementary Net Systems.
2 Places in the graphical presentation have separate in/out ports, and distinct transi-

tions are marked with a stroke. For details see [12].
3 Available for download: http://users.ecs.soton.ac.uk/os1v07/Penrose_CALCO13

http://users.ecs.soton.ac.uk/os1v07/Penrose_CALCO13

Each Petri net determines a transition system with states the markings of the
net and transitions that witness the simultaneous firing of an independent set of
net transitions. For reachability, we consider the net’s transition system as a non-
deterministic finite automaton (NFA) over a unary alphabet: the initial and final
states are, respectively, the initial and desired markings. Deciding reachability
then coincides with emptiness of the NFA’s language. This NFA is known as
the reachability graph of a net; one algorithm is thus to construct the transition
system, and determine if there is a path from the initial marking to the final one.
State explosion makes this approach untenable: the number of markings (and
thus, the statespace) is exponential in the number of places of the net.

1.1 A local approach: Penrose

Most standard approaches (e.g. [8,13]) to checking reachability are monolithic
in that they consider a net as a whole. Penrose takes a different approach:
decompose the net into small components (or take a decomposition as input),
locally check reachability, and use the local information to reconstruct a global
result. Our methodology is thus reminiscent of compositional model checking [5].

We use the algebra of nets with boundaries [11,3]. These extend Petri nets
by adding left and right boundaries to a net, to which, transitions of the net can
connect. They inherit the algebra of monoidal categories: composition can be
“sequential”, written ‘;’, where two nets are synchronised, having their common
boundary connected, or “tensor”, written ‘⊗’, where two nets are placed “on top”
of one another and considered as a single net. If N is a net with boundaries, we
write N : k → l if N has a left boundary of size k and right boundary of size l.

d2 : 0 → 4 ph : 2 → 2 fk : 2 → 2 i2 : 2 → 2 e2 : 4 → 0

Fig. 2: Component nets with boundaries of Dining Philosophers.

Using nets with boundaries, we can give a decomposition of the net in Fig. 1,
in terms of 5 simple component nets, illustrated in Fig. 2: PhRown is a row of
n alternating philosophers and forks, and Phn a table of n dining philosophers:

PhRow1
def
= ph ; fk

PhRowk+1
def
= ph ; fk ; PhRowk

Phn
def
= d2 ; (i2 ⊗ PhRown) ; e2

The Phn construction “seals” the row of philosophers into a table, by wiring the
last fork to the first philosopher, using d2, i2 and e2.

2

Consider the deadlocked configuration, where all forks are picked up, but
no philosophers are eating; this situation corresponds to a marking with fork
places empty, and the “eating” places unmarked in each philosopher. A net with
boundaries N : k → l determines an NFA in a similar fashion to a Petri net,
however, the labels of the NFA’s transitions are now important—they record
the interaction of underlying sets of net transitions on the boundaries, as a
pair of k-bit and l-bit binary strings4. The minimal DFA for PhRow2 with the
desired (local) marking is shown in Fig. 3 (the error state has been omitted, to
increase readability.) The DFA illustrated is actually a fixed point: for n ≥ 2,
the minimised DFA of PhRown is the same5. Similar observations have been
made about dining philosophers modelled using the algebra of Span(Graph) [7].

1 {00/00}

2

{10/00}

3

{00/01}

4

{00/10}

5

{10/10}

6

{10/01}

{01/00}

{00/00}

{01/01}

{01/10}

{00/10}

{00/01}{00/10}

{10/10}

{00/00}

{10/00}

{00/01}

{10/01}

{00/00}

{10/00}

{01/01}

{00/01}

{01/00}

{00/00}

{01/10}

{00/10}

{01/00}

{00/00}

Fig. 3: Minimal DFA for PhRow2.

The automata representing the underlying net components are ‘;’- or ‘⊗’-
composed through modifications of the standard product construction.

The high-level algorithm of Penrose is:

1. Take as input a reachability problem, comprised of a Petri net, considered
as a net with boundaries, and initial and final markings.

2. Transform the net into a wiring decomposition [12], or take one as input6.
A wiring decomposition is a binary tree, with nodes composition operators,
and leaves nets with boundaries (with local marking information).

4 A ‘1’ in the ith position indicates the presence of an interaction with the ith boundary
port, on the corresponding side.

5 In general, when we talk about fixed points we are referring to a situation in which
there exists k ∈ N such that Min(Nk) = Min(Nk+1), where Nn is a recursively defined
net built up from component nets with boundaries, and Min is some minimisation
operation (DFA minimisation, quotienting by weak bisimilarity, etc.).

6 Many real Petri nets have recursive specifications that are readily translated to the
language of nets with boundaries.

3

3. Traverse the wiring decomposition, avoiding duplicate work via memoisation:
– convert leaves (once per unique net) into corresponding NFAs and con-

struct minimal DFAs to discard irrelevant local statespace.
– at internal nodes, combine DFAs (once per unique pair) using either form

of composition, and then minimise the resulting DFA.

DFA minimisation can be prohibitively expensive. On the other hand, it is a
very coarse equivalence that allows us to prune the statespace aggressively, and
in some examples allows us to reach a fixed point quickly, when using a finer
equivalence would not suffice, as explained in Sec. 2. Properties of nets with
boundaries [11,3] ensure correctness, see [12] for proofs.

2 Applicability and Performance

State explosion is common in model checking of concurrent systems; by min-
imising the automata of component nets, we obtain the minimal characterisa-
tion of their “protocol”: how they must interact with the environment in order
to reach a desired configuration. Prior to minimisation, we ε-close7 the NFA,
since only actions that interact with the net’s boundaries affect its protocol. We
then determinise and minimise, using Brzozowski’s [4] algorithm. This algorithm
is conceptually very simple: the NFA’s transition relation is twice reversed and
determinised (using the subset construction).

The performance of Penrose depends on two factors:

1. The structure of the input net: can we identify repeated “small” components?
2. The semantics of a decomposition: does the statespace explode or grow

slowly as the net is reconstructed; do we reach a fixed point?

An initial investigation into structural issues has been carried out in [10]. Through
memoisation, we can avoid duplicate work if repeated structure of a net is ex-
posed and leads to a fixed point; for example, given the decomposition PhRown,
no extra work is required to check reachability for n ≥ 3, since a fixed point is
reached at n = 2. This leads to performance that sometimes asymptotically
outperforms monolithic approaches, see [12] for experiemental results. Charac-
terising the underlying semantic issues is an open research question: why do
Dining Philosophers reach a fixed point at n = 2?

2.1 Minimisation and fixed points

Minimisation using Brzozowski’s algorithm is potentially very expensive, since
the subset construction is performed twice. Indeed, Penrose performs well only
if small automata are minimised. The advantage to minimising w.r.t. language
equivalence is that statespace is pruned aggressively—in particular, branching
is discarded—and thus the likelihood of finding a fixed point8 is greater.

7 ε-transitions are those with labels 0∗, indicating internal behaviour.
8 Penrose finds fixed points via memoisation.

4

One alternative would be to quotient NFAs by (weak-) bisimilarity, obtain-
ing smaller, equivalent NFAs without exponential blowup. However, on many
examples bisimilarity is too fine an equivalence and fixed points do not exist
because of branching, which is irrelevant for reachability. Indeed, quotienting by
weak bisimilarity results in a fixed point only in deterministic variants9 of the
Dining Philosophers. We give another simple example of this phenomenon for
the “replicators” of Fig. 4a. A replicator component can output an unbounded

...

(a) Chain of n Replicators

2

1

{0/*}
0

{1/*}

{0/0}

{*/1}

{1/0}

{*/*}

(b) Minimal DFA for n Replicators.

number of tokens on the right after receiving a single token as input on the left.
Consider a chain of n replicators, with the desired marking having a token only
in the upper place of each; the chain’s protocol is simple, and furthermore, is
identical irrespective of n: after a single token has been received by the first
replicator, it can be percolated through the chain with no interaction on the
outermost boundary ports. This protocol is a fixed point reached at n = 1 and
is the DFA shown in Fig. 4b. Quotienting by weak bisimilarity does not induce
a fixed point. Therefore, in this example, the initial cost of determinisation pays
off, whereas quotienting by bisimilarity is prohibitively expensive for large n.

3 Representing transition functions with BDDs

Recall that a net with boundaries N determines an NFA L, with labels binary
strings of length l = |boundaries(N)|. A simple data structure for such an NFA

is a set of pairs (s, f), where s ∈ states(L) and f : { 0, 1 }l → 2states(L), that is, a
source state and function from labels to sets of (target) states.

Reduced Ordered Binary Decision Diagrams (ROBDDs, or commonly just
BDDs) are a compact representation of n-ary binary functions [1]. Penrose uses
a generalisation of BDDs, Multi-Terminal BDDs [6], encoding functions with
codomain the Boolean algebra of subsets 2places(N), rather than the Booleans.

As an example, consider the one place buffer net, B, and the reachability
problem (B, 〈absent〉, 〈present〉); we show B, the corresponding NFA and two
alternative BDDs representing state 2’s transition function, in Fig. 4.

BDDs are not necessarily minimal, with their size sensitive to variable order-
ing; for us, the lexicographical order10 on boundary ports. Indeed, by reversing

9 For example, philosophers that always take their left fork first.
10 The ordering gives an interleaving left-right, top-bottom, on boundary ports (i, s)

where i ∈ N, s ∈ {L,R } and L < R.

5

(c) Net B

2

0 {*/*}

1

{1/*}

{0/0}

{0/1}

{*/1}

{1/0}

{0/0}

(d) NFA for B

0L

0R

0

0R

1

{2}

0

{0}

1 1

{1}

0

(e) 0L < 0R.

0R

{0}

1

0L

0

{1}

1

{2}

0

(f) 0R < 0L.

Fig. 4: One place buffer net with boundaries B, NFA for B with the initially
empty, finally full marking and non-minimal and minimal BDDs for state 2.

the variable ordering of Fig. 4e we obtain a smaller BDD, illustrated in Fig. 4f.
For larger BDDs, the effect of reordering variables can be more dramatic. Com-
puting optimal variable ordering is NP-Complete [2].

Penrose represents NFA transitions with a collection of BDDs, one for each
state, but doing so loses potential sharing of common targets. For example, in
Fig. 4d, the BDDs for state 2 and state 1 transitions will both have leaves for
{ 0 }. One possible solution is to use a data-structure similar to that of Minato
et al. [9], where a single BDD is referenced by multiple “pointers” to nodes of
the BDD graph, thereby retaining sharing.

4 Future Work

Penrose is under active development, currently supporting basic reachability-
checking functionality outlined in this paper. We have obtained encouraging
experimental results, sometimes asymptotically improving on monolithic ap-
proaches. Future work will investigate applying our decomposition technique to
model checking problems other than reachability; optimising BDD representa-
tion, particularly w.r.t. the performance of the NFA to minimal DFA procedure;
and further development of an algorithm for automatic decomposition of nets.

References
1. H. R. Andersen. An Introduction to Binary Decision Diagrams. Technical University of Denmark, 1997.
2. B. Bollig and I. Wegener. Improving the Variable Ordering of OBDDs Is NP-complete. IEEE Transactions on

Computers, 45(9):993–1002, 1996.
3. R. Bruni, H. C. Melgratti, U. Montanari, and P. Sobociński. Connector algebras for C/E and P/T nets’

interactions. LMCS, 2013. To appear.
4. J. Brzozowski. Canonical Regular Expressions and Minimal State Graphs for Definite Events. In Mathematical

Theory of Automata, volume 12 of MRI Symposia, pages 529–561. Polytechnic Institute of Brooklyn, 1962.
5. E. M. Clarke, D. Long, and K. McMillan. Compositional Model Checking. In LiCS‘89, pages 352–362, 1989.
6. M. Fujita, P. C. McGeer, and J. C.-Y. Yang. Multi-Terminal Binary Decision Diagrams: An Efficient Data

Structure for Matrix Representation. Formal Methods in System Design, 10(2-3):149–169, 1993.
7. P. Katis, N. Sabadini, and R. Walters. Compositional Minimization in Span(Graph): Some examples. ENTCS,

104C:181–197, 2004.
8. K. McMillan. A Technique of a State Space Search Based on Unfolding. Form Method Syst Des, 6(1):45–65, 1995.
9. S.-i. Minato, N. Ishiura, and S. Yajima. Shared Binary Decision Diagram with Attributed Edges for Efficient

Boolean Function Manipulation. In Proc. DAC ’90, pages 52–57. ACM Press, 1990.
10. J. Rathke, P. Sobociński, and O. Stephens. Decomposing Petri nets. arXiv:1304.3121v1, 2013.
11. P. Sobociński. Representations of Petri net interactions. In CONCUR ‘10, pages 554–568. Springer, 2010.
12. P. Sobociński and O. Stephens. Reachability via compositionality in Petri nets. arXiv:1303.1399v1, 2013.
13. P. Starke. Reachability Analysis of Petri Nets using Symmetries. Syst. Anal. Model. Sim., 4/5:292–303, 1991.

6

	Penrose: Putting Compositionality To Work For Petri Net Reachability

