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Abstract—Functional programming is becoming an increasingly
popular programming paradigm; it offers conceptually simple
code, a high level of modularity and composability, and powerful
abstraction features. However, a long-standing difficulty associ-
ated with functional language design is how to correctly integrate
I/O functionality in a clean and idiomatic way; on the surface, it
would appear that the key features of functional languages are
immiscible with I/O. Different functional languages use a variety
of approaches to solve this problem; in this paper we investi-
gate the approaches of three well-known functional languages:
Haskell, Clean and OCaml, and discuss their differences and
relative advantages.

I. WHAT IS FUNCTIONAL PROGRAMMING?

Functional programming is a programming paradigm in which
the basic building blocks are functions, rather than objects
or procedures as found in other commonly-used paradigms.
Functions differ from procedures in that the former are mathe-
matical objects, which calculate their result based only on their
inputs, whereas the latter may employ side-effects to produce
their value. Hughes [1] has discussed the benefits of functional
programming — essentially, the ability to better decompose
problem solutions.

In this paper, we give an introduction to two key properties
of functional languages that are fundamental to the implemen-
tation strategies employed: strictness and purity. We discuss
the approaches used by three functional languages, OCaml,
Haskell and Clean, and show the key issues raised by their use,
by implementing a demonstration program in each language.

A. Strictness

Programming languages are often informally classified as ei-
ther strict or non-strict. The distinction refers to the evaluation
strategy of the language; strict languages use the call-by-value1

evaluation strategy, under which, function arguments are fully
evaluated before being substituted in the function body. Con-
versely, non-strict languages do not evaluate function argu-
ments before substitution in the function body. The arguments
are simply substituted2 into the function body in place of
the formal parameters, regardless of their form. Call-by-value
corresponds to the applicative order (or leftmost-innermost)
reduction strategy of the lambda calculus [2], where the “most
nested” reducible-expression (redex) is reduced first. Call-by-
name corresponds to the normal order (leftmost-outermost)
reduction strategy, where the least-nested, leftmost redex is
reduced first. Sestoft [3] demonstrates the differences between
the different forms of reduction.

Wadler [4] discusses some of the relative pros and cons of
non-strict and strict languages. One particular advantage of
strict evaluation is that the asymptotic complexity is generally
easier to reason about [5]. Plotkin [6] showed that it is
possible to simulate call-by-value using call-by-name and

1Sometimes referred to as pass-by-value.
2Some care must be taken in order to avoid variable capture (when changing

the context of a variable gives it a new meaning) when making the substitution.

vice versa. Wadler et al. [7] discuss some of the potential
difficulties in adding laziness to a strict language. Sheard [8]
proposes a strict-by-default language that uses explicit, lazi-
ness annotations provided by the programmer. An operational
optimisation for call-by-name languages is the use of lazy
evaluation, known as the call-by-need evaluation strategy. Call-
by-need prevents identical sub-expressions being evaluated
more than once, memoizing the sub-expression’s value when
it is first evaluated. Hughes [1] discusses the main benefits
of lazy evaluation, particularly, the “glue” that lazy functional
languages provide to enable decomposition of large problems.

B. Purity

Informally, pure functional languages are those that disallow
the unconstrained usage of side-effects. Side-effects are any
observable interaction that occurs as a result of evaluating
an expression, to obtain its value. Examples of side-effects
include: I/O, mutable state and concurrency. Side-effects are
commonly used in popular strict languages such as OCaml
and Scheme to provide I/O functionality. A call to a print
“function” will return some (usually void) value, in addition to
modifying the state of the output stream of the program. Side-
effects are particularly problematic in lazy languages; since
evaluation of sub-expressions is not guaranteed to occur — if
the sub-expression is not required, it will not be evaluated
— and has no guaranteed ordering, it can be difficult to
ensure that side-effects occur in the correct order. Figure 1
demonstrates the difference in behaviour between OCaml,
a strict language and Haskell, a lazy language. A more
formal definition of purity [9] is that a pure language will be
operationally independent from the argument-passing method
employed: an implementation of the language using call-by-
value will be equivalent, disregarding divergence3 and errors,
to a call-by-name implementation.

Side-effects reduce composability; given an arbitrary function
in an impure language, a programmer cannot guarantee the
behaviour of the function — when calling the function, there
is no guarantee as to what (if any) side-effects are performed
— combining side-effecting functions can at best lead to
unexpected behaviour and at worst cause a program error.

Side-effects directly affect the referential transparency of an
expression. Referential transparency refers to the ability to
replace a sub-expression with one of equal value, without
changing the value of the outer expression. Originating from
Quine [10], the term was introduced to Computer Science
by Strachey [11]. Referential transparency is a property that
is often cited as beneficial, yet as Søndergaard and Sestoft
note, the formal and informal definitions given are not always
equivalent [12].

To demonstrate referential transparency, consider the following

3A diverging expression is one that doesn’t converge to a value, for example
the Omega combinator: (λx.x x)(λx.x x).
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let l = ["1", "2", read_line ()];;
print_string (list.hd l);;

(a) OCaml
main = do

let l = [return "1", return "2", getLine]
head l >>= putStrLn

(b) Haskell

Fig. 1: Example programs demonstrating the difference
between strict and lazy languages. Both programs create
a list containing two strings and a command that reads a
string from the standard input stream; the first element of
the list is then printed. The OCaml implementation will
block, waiting for user input and then print the string
“1”, since the print statement is evaluated when the list
is created. The Haskell implementation will simply print
the string “1”, since lazy evaluation means that the list
elements are not evaluated4.

statements, made after a hypothetical race has finished:

A = The winner of the race. (1)
B believes that A finished second in the race. (2)

substituting (1) into (2) clearly yields a falsehood. (2) is said
to be a referentially opaque context. Whereas:

A beat all the other competitors. (3)

allows substitution of (1) into (3) without yielding a falsehood.
(3) is said to be a referentially transparent context.

There are several advantages of purity:

• If a sub-expression’s value is not required in any containing
expression, it can safely be removed by the compiler; in an
impure language, the expression may not provide a value
that is used, but it may perform side-effects that affect the
computation. An example is the loop-counter increment in a
C-style loop — the value of the incrementation is not used,
but the side-effect is required to advance the loop index.

• Automatic function-argument memoization (known as a
call-by-need evaluation strategy) is possible, since referen-
tial transparency is guaranteed; consider the expression (f
y) + (f y). In a pure language, it is safe to transform
the expression, by assigning the value of f y to a variable
x: let x = f y in x + x (replacing the function call
with its value), since the absence of side-effects guarantees
the equivalence. The opposite is true for a side-effecting
expression; the compiler cannot guarantee that the transfor-
mation does not alter the resultant value.

• Data-independence: pure expressions may be trivially5 par-
allelised - since there are no side-effects the relative ordering
of expression-evaluation does not affect the result.

4The evaluation of an IO action in Haskell does not actually perform the IO,
the action must be executed, usually within a do-block, but the demonstration
is still valid.

5Although, not necessarily efficiently.

II. WHY IS I/O DIFFICULT IN PURELY FUNCTIONAL
PROGRAMMING LANGUAGES?

As noted previously, I/O is usually performed in strict lan-
guages through the use of side-effects. Since the order of
evaluation is known in a strict language, side-effects can more
safely be used — the programmer can guarantee that one side-
effect will occur before another. Non-strict languages cannot
use side-effects, due to the lack of a predetermined evaluation
order. Purely functional languages eschew the use of side-
effects, due to the difficulty of correctly controlling their use;
performing I/O therefore requires a different approach to those
used in impure languages.

Peyton Jones motivates the need for a method of enabling I/O
in the purely functional programming language Haskell [13]:

I/O is the raison d’être of every program. — a
program that had no observable effect whatsoever
(no input, no output) would not be very useful.

Hudak and Sundaresh surveyed the available I/O models avail-
able to early Haskell, describing the difficulties that any model
must overcome [14] — referential transparency, efficiency and
incremental operation6.

To summarise, the main question to be answered when im-
plementing I/O functionality in lazy functional languages is
that of sequencing; How does the language ensure that I/O
operations occur in the correct relative order, as intended by
the programmer?

III. CASE STUDIES

We discuss three popular functional programming languages
that employ differing approaches to providing I/O. We observe
and discuss the pertinent details of the theory and implemen-
tation of I/O in the languages, evaluating their relative merits.
The three languages to be studied are Haskell [15], Concurrent
Clean [16] and OCaml [17].

A. Haskell

Haskell is a lazy, pure functional programming language.
Historically, Haskell has used several approaches to imple-
menting I/O; due to its pure and lazy nature, side-effecting
I/O functions could not be used. At the time of its design,
there were two main approaches available to be used by
Haskell [18]: stream transformations and continuations. [14]
discusses streams and continuations and the original Haskell
approach to I/O. Peyton Jones and Wadler [19] also discuss
the approaches to I/O taken by early Haskell. Monads were
introduced to Haskell as a method of implementing I/O, and
have been fully integrated into the language. Recently, a new
form of structuring I/O named Iteratees has become popular
in Haskell. Iteratees are not built in to the language, and are
not strictly a method of implementing I/O (they use monads
to provide I/O operations) but instead are used to manage
I/O more effectively, and solve the problems of “lazy I/O”
provided by Haskell.

B. Concurrent Clean

Concurrent Clean (or simply, Clean) is also a lazy, pure
functional programming language. Its distinguishing feature

6Incremental in the sense that the output a program generates should
become available as it is generated, rather than when the program exits.
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is the use of a uniqueness type-system. The uniqueness type-
system is able to distinguish expressions that are not allowed to
be shared from those that can. This sharing restriction allows
the Clean compiler to ensure that I/O functions are executed
in a single-threaded, deterministically ordered way.

C. OCaml

OCaml [17] is a strict, impure functional programming lan-
guage. I/O is channel based, and is performed using side-
effecting functions.

IV. APPROACHES

A. Side-Effects

Strict functional languages nearly always use side-effects to
implement I/O operations. One exception is the pure language
described by Sheard [8] that uses a strict-by-default evaluation
strategy, with explicit “laziness” annotations that allow a
programmer to specify that non-strict evaluation should take
place. Being pure, the language does not employ side-effects,
instead using the monadic approach of Haskell7.

As described earlier, side-effects do not combine well with
non-strict languages, due to difficulty of predicting the order
in which the side-effects will occur.

Even in strict languages, purity has benefits; the choice to
discard purity in order to use side-effecting I/O is probably
taken due to the relative ease-of-implementation. Without
purity, there are no assurances as to the I/O behaviour of a
given function — equational reasoning becomes difficult, at
best.

B. Stream-Transformers

Stream transformers map streams of some input type into a
stream of some output type. A stream is a lazy list; the tail of
the list is not evaluated until it is required. Therefore, a stream
can represent an infinite list, and can be used to model I/O
interactions of unbounded duration.

The term stream was first coined by Landin [20] when
describing a correspondence between ALGOL60 for-loop-step
evaluations and the Lambda Calculus.

In a lazy language, stream transformers can be represented by
a function from lists to lists:

type ST in out = [in] -> [out]

Non-strictness is critical in the use of stream-transformers:
if the list was strictly constructed, the entire list would be
evaluated before it was used, which clearly cannot model
interleaved I/O — in the case of teletype I/O, the list of user
responses would have to be known, before the requests for
that input were presented to the user.

Two specialisations of stream transformers used in functional
languages are Landin Streams and Synchronised Streams.

1) Landin Streams

Landin streams are a simple specialisation of stream-
transformers, which treat the type of both the input and output
streams as Char [21]:

type LS = ST Char Char

7The language is implemented on top of a Haskell interpreter, providing
monad-based I/O “for free”.

Landin stream I/O was proposed by Landin[20] as a possible
method of providing I/O in ALGOL60; output is produced
as the values of the output stream are determined, and
similarly, inputs occur when the “next” value is demanded
from the stream [21]. A program is free to demand many
input characters, or append many output characters, without
synchronisation between the two streams.

Landin stream I/O is particularly primitive; it does not model
all types of I/O that a programmer may wish to perform8,
instead only modelling teletype I/O.

2) Synchronised-Streams

The synchronised-stream mechanism generates a stream of
requests and processes the stream of responses, in a one-to-
one fashion. Algebraic types are used for both the request and
responses, with a data constructor pair for each possible I/O
interaction that may be performed:

data Req = GetChar
| PutChar Char
| ...

data Resp = ReadChar Char
| Done
| ...

type SS = ST Resp Req

Synchronised streams, also known as Dialogues [22], were the
original method of I/O in Haskell [23].

Synchronised stream I/O is an improvement over Landin
streams, in that it is able to model all types of I/O that
a programmer may wish to perform. In his definition of
synchronised streams, Stoye [24] notes that without requiring
that requests/responses are made/received in pairs, it can be
difficult to ensure that the correct synchronisation between
input and output is achieved.

As Wadler notes [25], synchronised streams are less modular
than monads, it being difficult to compose two functions that
both perform I/O. However, synchronised streams do still serve
a theoretical purpose, as they can be used to give a denotational
semantics to monadic I/O.

Peyton Jones and Wadler [19] point out the difficulties in
programming using synchronised streams. They give the fol-
lowing example of an “echo” program that simply copies
characters from its input stream to its output stream9:

echo :: SS
echo responses = GetChar :

if c == EOF then
[]

else
PutChar c :

echo (drop 2 responses)
where

(ReadChar c) = responses !! 0

This example shows the fragility of programming using syn-
chronised streams. If three elements were removed from the

8For example, using only input/output character lists, there is no way for
a program to request that a file is opened for reading.

9x !! n returns the nth element of list x, and drop n xs removes the
first n elements from list xs.
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response stream, rather than two (the ReadChar c and
Done responses to the GetChar and PutChar c requests),
the program would deadlock, since the recursive call would
attempt to evaluate a response element that hadn’t been
requested. If only one element was removed, the pattern match
used to extract the char would fail10.

C. Continuations

A continuation represents the execution state at a given point
in the program’s execution, that is, a data-structure that reifies
the control state of a program, including the call-stack and
local variables. A history of the origins of continuations is
given by Reynolds [26].

If a language supports first-class continuations, it provides
facilities to capture and invoke continuations within the exe-
cution of a program. This allows continuations to be assigned
to variables and passed to, or returned from functions. Upon
invocation of a continuation, the control is reset as it was when
the continuation was captured.

A common use of continuations is the programming style
Continuation Passing Style or CPS. In CPS, functions do not
return values, instead taking as parameter the continuation to
invoke (passing the function’s result) upon completion.

Continuation I/O operations are written in CPS, for exam-
ple:

putCharCont :: Char -> Cont -> Cont
getCharCont :: (Char -> Cont) -> Cont
doneCont :: Cont

The putCharCont function takes a character and a con-
tinuation, writes the character to the standard output stream
and then invokes the continuation. getCharCont takes as
parameter a function that accepts a character and returns a
continuation, reads a character from the standard input stream
and then passes the character to the function. DoneCont is a
termination continuation that performs no action and is used
to end the chain of continuations.

Wadler [25] gives the following continuation I/O implemen-
tation for the “echo” program11:

echoCont :: Cont
echoCont k = getCharCont (\c ->

if (c == EOF) then
k

else
putCharCont c (echoCont k))

mainCont :: Cont
mainCont = echoCont doneCont

Peyton Jones and Wadler [19] show the surprising similarities
between continuations and monads, the current method of
implementing I/O in Haskell.

Hudak and Sundaresh [14] present a slightly different formula-
tion of continuation I/O, specifically, they include both success
and failure continuation parameters to enable failures to be
handled by the caller.

10Instead of ReadChar Char, the type of responses !! 0 would be
Done — the response to the GetChar request.

11The parameter representing the continuation is commonly named k.

Gordon [21] notes that the main advantage of continuation
I/O over synchronised stream I/O is that the former cannot
suffer from the same synchronisation issues that the later
can. In particular, deadlock due to premature response stream
evaluation is not possible.

D. Monads

Monads originated in Category Theory, a branch of abstract
Mathematics. Moggi [27] was first to observe that monads
could be used to structure programs. Wadler [28] [25] and
Peyton Jones [19] published several papers, further expanding
and elucidating Moggi’s ideas. Wadler [29] gives a compre-
hensive introduction to and motivation for the use of monads
in Haskell.

Monads can be used to describe a wide range of structure and
behaviour in functional programming languages. They can be
used to simulate global state, I/O, exception handling and non-
determinism [30]. Peyton Jones outlines the use of monads in
modern Haskell [13].

The essential idea of monads in functional programming is
that they allow for the construction and sequencing12 of com-
putations, through the use of just two generalised combinators.
The type signatures13 of the two combinators are:

return :: (Monad m) => a -> m a
(>>=) :: (Monad m) =>

a -> (a -> m b) -> m b

the return function takes a value of type a and places it
into the “default”14 context of the monad in question, m. The
operator (>>=) pronounced bind takes a monad-encapsulated
value of type a, and a function that takes a value of type a
and returns a monad-encapsulated value of type b, extracting
the value from the first argument, and returning the result
of passing it to the function. m a represents the type of a
value of type a wrapped within the computational context of
a monad m. For example, the type of the function getChar is:
getChar :: IO Char, that is, getChar is a function that
will return an IO computation, which, when executed, will
return a value of type Char. Consider the following Haskell
expression15.

getChar >>=
(\c1 -> getChar >>=

(\c2 -> return (c1,c2)))

Fig. 2

This expression sequences two getChar functions, returning
a tuple containing the first entered character as its first ele-
ment, and the second as its second. It has type IO (Char,
Char), that is, an IO action that when performed, will

12Monads do allow for sequencing, and it is that property that the IO
monad in Haskell exploits. However, it is not essential for a monad to impose
sequencing.

13Here, return is the name of the function, :: denotes a type signature,
(Monad m) => signifies that the type parameter m has a class constraint
within the following type definition (namely, that it must be an instance of a
monad) and a, b and m are type parameters.

14The default context depends on the monad being used; the default context
for IO is a computation that when executed simply returns the original value,
without performing any I/O.

15Brackets are added for visual clarity — parsing is unambiguous in their
absence.
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return a tuple containing two Chars. Due to the underlying
IO monad implementation, the I/O will be performed such
that the tuple element ordering is always the same as the
order-of-character-entry as performed by the user. A possible
implementation16 of the IO monad is to model it as a function
that transforms “World” values: data IO a = World ->
(a, World), known as an implicit Environment-Passing
scheme, since the World value is threaded through the
computations by the implementation, not the programmer. The
World value represents an encoding of the current “state of
the world”, which is modified by functions such as getChar
(where the “state” of the standard input stream would be
modified to signify that a character has been read). The data-
type IO a can therefore be thought of as a function that takes
a World value, and returns a tuple containing a value of type
a and a new World value. Using this implementation, the
bind operator can be used to introduce a so-called data depen-
dency between two IO computations. A data dependency is
introduced whenever an expression contains a sub-expression;
the sub-expression must be evaluated before the containing
expression, since the value of the expression depends on
the value of the sub-expression. For example, consider the
following simple expressions:

expr = subExpr + 3
subExpr = (1 + 2)

there is a data dependency between expr and subExpr,
whereby expr cannot be evaluated before subExpr.

As a demonstration of the use of data dependencies to en-
sure correct I/O, an implementation might use the following
transformation17 of the expression in Figure 2.

getChar :: World -> (Char, World)
getChar w = (nativeGetChar, mkNewWorld w)

expr :: World -> ((Char, Char), World)
expr w1 = case getChar w1 of

(char1, w2) -> case getChar w2 of
(char2, w3) -> ((char1, char2), w3)

where nativeGetChar is the side-effecting getChar func-
tion of the underlying platform18 and mkNewWorld gener-
ates a new World value. The data dependencies are intro-
duced through the use of the “threaded” World values —
w1,w2,w3. The resulting tuple depends on w3, which is
generated by the second getChar call, which depends on
w2, as generated by the first getChar call. This sequence of
data dependencies gives the required sequencing for correct
I/O operations, to ensure the first element of the tuple is the
first element entered by the user and vice-versa for the second.

Consider an alternative expression (which is not valid Haskell):

(nativeGetChar, nativeGetChar)

In a lazy language such as Haskell, the order of evaluation
is not specified and it is therefore not possible to ensure that
the first entered character will necessarily be the first element
of the resulting tuple — if the evaluation order is such that
the second nativeGetChar is evaluated first, the resulting

16This is a simplified model, and as such does not take account of the
concurrency features of real-world implementations.

17Indeed, this is similar to that of the popular GHC compiler [31].
18For example, if the compiler targeted C directly, the call would be to the

getc function contained in the stdio header.

tuple’s value ordering will not respect the order-of-character-
entry.

The obvious advantage of monadic programming, particularly
using Haskell’s do notation is that of syntactic neatness —
there is no “cluttering” of continuations or streams to be passed
around in the program, the monad encapsulates the state it
requires, effectively “hiding the plumbing”.

A potential drawback of monads, is that they force the use of
a single environment, to be passed between all I/O operations
within a program, effectively sequentialising all I/O opera-
tions. Effects encapsulated within the IO monad are difficult
to reason about, a topic discussed by both Swierstra [32] and
Gibbons and Hinze [33].

E. Uniqueness Types

Clean uses a Uniqueness type-system, which is used to con-
fine the copying of expressions. The type-system includes
annotations to mark types as either unique or non-unique —
expressions used in a context requiring a unique type may
have at most one reference to them. Clean’s I/O system uses
functions that take a unique valued world as argument and
return a unique world, in a similar style to the implicit world-
passing of Haskell’s IO monad.

Uniqueness types offer two main benefits: they permit safe
destructive updates [34] for efficiency and also enforce the
sequencing of I/O operations. The type-system uses a tech-
nique called sharing-analysis to determine whether there are
multiple references to a given expression.

If the compiler can guarantee that an object is used in a
unique way, then it is free to employ a destructive update,
rather than a full copy and update, giving an increase in
performance. Referential transparency is maintained when
using a destructive update of a unique object; conceptually,
the function is returning a different object, it just happens that
the argument no longer exists in its original form. The same
function implemented without a destructive update will have
the same observable value, and could be used as a less efficient
replacement.

Uniqueness types can be used to allow the programmer to
use side-effecting functions, in a way that does not violate
referential transparency. As an example, consider a function
getChar :: File -> Char, which may be used to ob-
tain a single character, given a file. Referential transparency
dictates that given the same file variable, the function must
return the same character. However, this is not much use —
the programmer should be able to read all the characters in a
file, not just the first. Using uniqueness types, we can mark
the function such that it takes a unique file, and returns a pair
containing a character, and a new, unique file: getChar ::
*File -> (Char, *File)

19. The uniqueness constraint
means that the getChar function may never be called more
than once with the same argument - to do so would mean that
the argument must have been duplicated, losing its uniqueness
property. Referential transparency trivially holds, since the
type-system ensures that the same function is never passed
the same expression as an arguments. The net effect is that
the programmer is forced to thread the unique values through
the program20, sequencing the order of effects. The required

19
*File signifies a unique File type.

20This style of value threading is known as an explicit environment passing
style.
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sequencing of I/O operations is thus guaranteed by the type-
system.

Uniqueness types offer a finer level of granularity, when
compared to the IO monad of Haskell. Using uniqueness types,
a programmer may specify that a single file is unique, rather
than the entire “world”. The IO monad implementation in
Haskell does not allow such granularity - a file cannot be
separated from the world that contains it. This allows Clean
to safely perform mutually exclusive I/O operations in parallel,
using multiple environments [35], whereas Haskell cannot21.

One problem introduced by uniqueness types is that the
type-system’s complexity is increased as it must enforce the
uniqueness restrictions. Ensuring uniqueness of arguments and
function results is undecidable in the general case [35], how-
ever the use of a uniqueness type-system makes the problem
tractable. De Vries et al. present a simplified uniqueness type
system [36], compared to that of Clean, allowing a simpler
type-system implementation.

Butterfield and Strong [37] note that the uniqueness type-
system statically ensures that it is not possible to incorrectly
attempt to interact with a closed file handle in Clean; since
the Clean closeHandle call does not return a new handle,
the programmer must attempt to reuse an old handle, thus
violating the required uniqueness property. There is no such
guarantee in Haskell — a programmer can attempt to read
or write using a closed Handle, which will cause a runtime
exception to be thrown.

F. Iteratees

A common idiom within functional programming is the notion
of “folding” a data-structure. Folding is accomplished by
iterating a function over each element in the data-structure,
which accumulates a single return value. Common implemen-
tations of the higher-order-function22 fold take a function to
be iterated, an initial value and a data-structure to iterate over;
its type signature for operating on lists would be:

fold :: (a -> b -> a) -> a -> [b] -> a.

For example, summing the elements of a list can be simulated
using a fold: sum list = fold (+) 0 list.

Within the fold idiom, there are two main components; we call
the object being iterated over the data-structure an iteratee and
the controller of the iteration the enumerator. In the previous
example, (+) is the iteratee and fold is the enumerator.
Enumerators can be thought of as iteratee transformers — they
pass values to the iteratee, to transform its internal state.

Originally proposed by Kiselyov [38] as a solution to the prob-
lems caused by lazy I/O in Haskell, iteratees are an application
of the fold operation with possible early-termination, to enable
safe, predictable I/O. Lazy I/O enables a file to be read, on
demand, in a lazy fashion. The readFile function provides
lazy I/O [39]:

readFile :: FilePath -> IO String

as more of the string returned by readFile is required,
side-effecting file operations are performed. This has many

21A commutative monad allows for arbitrary ordering, but there is no way to
express that the commutative property holds for a given IO (or other monad)
operation, in Haskell.

22Higher-order-functions are functions that either take as parameters, or
return, functions.

problematic corner cases, as outlined by Kiselyov [40], but
essentially the problem is that a pure expression returned by
a lazy I/O operation may cause side-effects upon evaluation,
breaking referential transparency.

We give a simplified23 outline of the data-types involved in
iteratees:

data Stream a = Chunk [a]
| EOF

data Iteratee a b = Stream a -> Iteratee a b
| Yield b

type Enumeratee a b = Iteratee a b ->
Iteratee a b

that is, an iteratee is either waiting for more input, or has
yielded a result value. Enumeratee is a type synonym for
an iteratee transformer, which are usually implemented by
performing some action (for example reading a line from a
file) to obtain input, and passing it to the iteratee.

The main improvements of iteratees, over lazy I/O are:

Improved modularity: producer and consumer code is clearly
separated, by design, improving composability — multiple
enumerators or iteratees can be easily composed.

Guaranteed performance: with lazy I/O, no guarantee is
made about when a file handle will be closed, leading to
possible runtime resource exhaustion. Iteratees guarantee that
an opened file handle is closed when the file’s contents have
been read (or earlier, if the iteratee yields a value) and that
a fixed amount of data is read at once, giving predictable,
constant memory usage.

Safety: The implementation of lazy I/O silently discards any
errors that occur when using the lazily-read data, simply
truncating data. Iteratees explicitly handle exceptions24. Since
lazy I/O returns a pure value, which when evaluated may read
more data from a file, exceptions can be thrown in pure code,
where they cannot be handled [43].

V. DEMONSTRATION CODE

To demonstrate the application of the different methods of
I/O in the three example languages, we present an example
program, translated into each language. The program imple-
ments a simple remote service, which sums over a list of files
that each contain a single integer. We only include pertinent
snippets with commentary here, due to lack of space; the full
source code is made available online [44].

The following code shows a benefit of Clean’s uniqueness type
system:

readInts :: [*File] -> [Int]
readInts [] = []
readInts [f : fs]

# (ok, i, f) = freadi f
# is = readInts fs
| not ok = is
| otherwise = [i:is]

23Real implementations, such as [41] [42] use more complicated definitions
that include error handling and monadic actions (our definition doesn’t include
the ability to actually perform I/O).

24Which may become cumbersome, in instances where no recovery is
desired or necessary.
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readInts takes a list of unique files, but since it does not
return a list of files, the type-system guarantees that any future
attempted use of the file variables is an error. freadi is a
side-effecting function, with type

freadi :: *File -> (Bool, Int, *File)

but since the file variables are guaranteed to be unique, there
is no chance of another function attempting to read from the
same file variable (leading to possible differences in side-effect
ordering, dependent on evaluation order). If Clean provided a
built in parallel operator, we would be able to take advantage
of Clean’s environment partitioning — we could read each
file, in parallel, unlike in Haskell, where we are forced to use
a single (implicit) environment.

The following code shows the drawback of an explicit
environment-passing scheme:

doLoop :: TCP_Listener *World ->
(TCP_Listener, *World)

doLoop listener w
# ((_, {sChannel, rChannel}),

listener, w) = receive listener w
# (bytemsg, rChannel, w) =

receive rChannel w
# strMsg = removeNL (toString bytemsg)
# (result, w) =

tryProcess (tryReadCommand strMsg) w
# (sChannel, w) =

send (toByteSeq result) sChannel w
# w = closeChannel sChannel w
# w = closeRChannel rChannel w
= doLoop listener w

Throughout the function, the World parameter, w has to be
manually passed to each function call that affects the world,
to ensure the correct sequencing. This puts a burden on the
programmer, and visually distracts from the intent of the code
— not particularly Clean, even modulo line-wrapping!

The OCaml directory enumeration code demonstrates OCaml’s
iim

let enumDir(dir : string) : string list =
let fileList = ref [] in
try

let dirHandle = opendir dir in
while true do

let file = readdir dirHandle in
fileList := file :: !fileList ;

done;
!fileList

with
| End_of_file -> !fileList ;
| Unix_error _ -> [];;

fileList is a reference to a list that is destructively updated
on each iteration of the loop25. The readdir function
attempts to read the “next” entry in the directory, throwing
an exception once there are no further entries. This iterator-
like function is very imperative in appearance and use, but has
the advantage (similar to non-strict evaluation) that the entire
directory is enumerated, only if it is requested.

25In OCaml, ! is the dereference operator and := is the assignment
operator.

The following code shows the use of Haskell’s lazy I/O:

doSum :: String -> IO Integer
doSum dir = do

contents <- liftM (map (dir </>)) $
enumDir dir

fNames <- filterM doesFileExist contents
lines <- mapM readFile fNames
return . sum . map read $ lines

readFile lazily reads the whole file, returning a pure string
value. This is not ideal however, since being pure, there is
no restriction on the sequencing of consuming the lazy string.
This can lead to unexpected results, in the presence of errors
(the file contents can be silently truncated). This solution also
causes an exhaustion of file handles, if the directory that
is being enumerated contains many files26. This is because
readFile strictly opens the files, but lazily reads the data;
the Clean implementation also suffers from the same problem,
with the same cause. To prevent the issue, a refactoring would
be required: instead of opening all the files, then reading a line
from each file, we would have to open and read a line from
each file in turn. In this case, the refactoring is simple and easy
to make, but this is not always the case. Lazy I/O allows the
processing of large files, without requiring large amounts of
RAM (to store the file in memory, whilst it’s being processed),
but causes resource exhaustion problems as discussed.

To combat the problems introduced by lazy I/O we imple-
mented an iteratee-based doSum function:

doSum :: String -> IO Integer
doSum dir = do

contents <- liftM (map (dir </>)) $
enumDir dir

fNames <- filterM doesFileExist contents
let enums = concatEnums $
map ET.enumFile fNames

lines <- run_ $ enums ==<< EL.consume
return . sum . map (read . unpack) $ lines

We use a composed list of enumerators that each read a single
file, and an iteratee that creates a list of the values it has
consumed. Each file is opened in turn, the iteratee is fed its
contents, then the file is closed. Other than using a different
function to convert the lines to integers and assigning the
enumerators to a variable, the remaining code is the same as
the lazy I/O example.

We have shown pertinent snippets of each of our implemen-
tations. The use of Clean’s uniqueness types forces us to
manually thread the environment state through our program,
unlike Haskell, which implicitly passes the world environ-
ment, “hiding the plumbing” — albeit conservatively over-
sequentialising the I/O actions, which could otherwise be
performed concurrently. We demonstrated that OCaml allows
us to use destructive updates and side-effecting I/O, due to its
strict nature; however, we propose that giving up on referen-
tial transparency, and consequently, equational reasoning and
simple composability, is too great a loss for a language.

VI. CONCLUSION

Functional programming languages approach the difficulty of
providing I/O, whilst maintaining the benefits of a functional
programming language in variety of ways. We have explored

26Around 1050 files on the first author’s Linux machine.
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the usage of side-effecting “functions” in a strict language,
OCaml, monads and iteratees in the lazy, pure language
Haskell, and uniqueness types in the lazy, pure language Clean.

The obvious requirement of an I/O mechanism is that it must
correctly enforce the required sequencing of I/O interactions.
However, I/O is an integral part of any program, and thus,
should not be difficult for a programmer to use. Stream
transformers are fragile to use, continuations are powerful
but somewhat clutter the syntax of functions. Monads and
uniqueness types both present a trade-off, do we accept
the over-sequentialisation imposed by monads, or the visual
disorder of explicit environment passing? We believe that a
compromise is still to be found; I/O is not a particularly active
area of research, but new approaches are still being discovered,
iteratees being a case in point.
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